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Executive summary

Artificial Intelligence (Al) is increasingly applied in food safety management, offering new
capabilities in data analysis, predictive modelling, and risk-based decision-making. A review of
the literature identifies three primary areas of application: scientific advice, inspection and border
control, and operational activities of food safety competent authorities. Five country examples
with the real-world use cases illustrate diverse uses of Al tools, including pathogen detection,
import sampling prioritization, and language models for regulatory data processing.

Regulatory frameworks, as well as voluntary governance, addressing Al in the public sector are
emerging worldwide. National and international initiatives often highlight the importance of
data governance, transparency, ethical considerations, and human oversight. Challenges such
as biased data, explainability, and data governance gaps appear across different contexts, along
with potential risks from deploying Al systems prematurely. Access to high-quality, interoperable
data and collaboration among stakeholders can support effective integration of Al technologies.

Al readiness often depends on understanding specific problems to be addressed, current capacities,
and the quality of available data. Human oversight and continuous evaluation contribute to
maintaining trust in Al systems. Collaborative efforts involving academia, the private sector, and
international organizations help build shared knowledge and resources for Al development in
food safety.

Overall, Al presents opportunities to enhance resilience, efficiency, and responsiveness in food
safety systems. Careful consideration of governance, data management, and multi-stakeholder
cooperation can shape Al's contribution to achieving sustainable and equitable outcomes in
agrifood systems.

Keywords: Artificial Intelligence (Al), food safety, data governance, predictive modelling,

machine learning, risk-based decision-making, ethical Al, explainable Al, cross-sector
collaboration, capacity development, Al use case, food safety competent authority.
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¢ INntroduction

1.1. Background

Artificial intelligence (Al) has been revolutionizing a wide variety of domains, including finance, marketing,
manufacturing, transportation, education and healthcare, including food safety (Ding et al., 2023). The
integration of Al into food safety regulatory frameworks may offer great potential for enhancing requlatory
effectiveness (Qian et al., 2023). While the United Nations Educational, Scientific and Cultural Organization
(UNESCO) defines Al systems as “systems which have the capacity to process data and information in a
way that resembles intelligent behaviour and typically includes aspects of reasoning, learning, perception,
prediction, planning or control” (UNESCO, 2021), Al can simply be explained as a field of research in computer
science that focuses on developing and studying methods and software that enable machines to perceive
their environment, learn from it, and take intelligent actions to maximize the chances of achieving defined
goals (Russell and Norvig, 2021) (Figure 1). In the context of food safety, the term “Al” typically refers to
machine learning (ML) and/or deep learning (DL).

The relationship between artificial intelligence, machine learning and deep
learning

Al

Machine learning

Deep learning

Source: Authors’ own elaboration.
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Machine learning is a subset of Al and in general, it uses algorithms to learn from training data and the
relation is generalizable to unseen data (Koza et al., 1996). In one of the common applications of machine
learning, researchers or engineers extract characteristics (i.e. features) from raw data and use statistical
methods to learn patterns (Mohri et al., 2018). For example, a machine learning algorithm may be trained
on a dataset containing apple colour at various ripeness levels. It can predict the ripeness of a new, unseen
apple based on colour. While unsupervised machine learning explores data to identify structures without
predefined labels, supervised machine learning learns from labelled examples and improves with more data.
Consequently, unsupervised machine learning involves clustering, where samples are grouped based on
feature similarity, while supervised machine learning focuses on predicting labels from features through
classification or regression (Jordan and Mitchell, 2015).

Deep learning is a subset of machine learning that uses neural networks with many layers to analyze and
learn from large amounts of raw data. It enables the Al applications to recognize patterns, make predictions
and improve their performance with additional data, similar to how humans learn from experience. In this
way, the explicit extraction of characteristics / features is often no longer needed (LeCun, Bengio and Hinton,
2015). Deep learning is not strictly a subset of either unsupervised or supervised learning, as it can be used
in both cases, though it is commonly associated with supervised learning (Yuan et al., 2020). Currently, deep
learning is used in most state-of-the-art techniques, ranging from unlocking your smartphone with face /
fingerprint recognition to self-landing rockets (Parloff, 2016). For example, in the context of food safety,
deep learning algorithms can analyze raw data such as customer reviews and social media posts to detect
early signals of foodborne disease outbreaks.

1.2. Relevance to food safety in the agrifood systems

While the importance of food safety is recognized by many, the relevant data generation, collection and
consolidation may not be easily achieved by many countries, particularly low- and middle-income countries
(LMICs), hence, the real burden of foodborne disease remains dramatically underreported, which stymies
public investments in food safety (Grace, 2023). On the other hand, in most high-income countries, vast
amounts of food safety-related data generated within agrifood systems have been of benefit (Mu et al.,
2024; Qian et al., 2023) for the development of Al applications, particularly within scientific research, in
predicting and identifying food safety issues, prioritizing them and efficiently carrying out relevant regulatory
activities in a more efficient manner. High-income countries are witnessing an accelerated adoption of digital
technologies across all stages, from farm to table. This digitization, while offering numerous benefits in terms
of efficiency, transparency, and sustainability, also creates new vulnerabilities. Cyberattacks can disrupt
critical logistics networks, compromise data integrity related to food safety, and lead to the theft of valuable
intellectual property (Leligou et al., 2024). Data breaches and data manipulation caused by cyberattacks
may lead to theft of sensitive information, including customer data, financial records, proprietary business
information (e.qg. recipes, processes), or intellectual property (e.g. crop genetics). A critical concern is the
manipulation of food safety data, either to hide contamination or fabricate evidence of it, potentially causing
public health crises or severe reputational damage. False data injection can tamper with decisions and
results (USDA, 2024).

Conventional procedures for ensuring food safety, such as detecting food contamination or adulteration,
are currently considered by many countries, especially in LMICs, as costly, elaborate, sample destructive,
time-consuming; and as requiring specialized infrastructure and intensive manual labour (Magnus et al., 2021).
Also, the use of human senses, such as appearance and smell, for example, to determine the freshness of
vegetables or meat products is inadequate and may result in variable outcomes. This illustrates the problem
of noise in subjective judgements (Kahneman et al., 2021). Furthermore, resources are often inefficiently
allocated to inspections that are not risk-based or fail to prioritize efficiency in their execution.

ARTIFICIAL INTELLIGENCE FOR FOOD SAFETY



High expectations from Al applications are reported in the area of food safety (Deng, Cao and Horn, 2021;
Taneja et al., 2023). The application of Al in food safety may offer an avenue to develop cost-effective and
automated systems that are fast and user-friendly procedures for food classifications, quality control, food
safety assurance, and food grading (D’Amore et al., 2022; Miyazawa et al., 2022). Furthermore, in some food
testing, the use of Al may reduce the need for rigorous laboratory experiments that require various expensive
chemical reagents, thus, a strategy that is environmentally friendly with timely results can be potentially
developed (Sharma and Sawant, 2017). This could lead to proactive approaches in managing food safety
risks, therefore significantly reducing overall costs of foodborne disease outbreaks and economical losses
resulting from food recalls, food waste, hospitalization, medications, and deaths in the long run (Pal and
Kant, 2018). It is important to note, however, the energy demands of large-scale Al systems may carry
environmental costs; a comprehensive life cycle assessment (LCA) would be necessary to fully evaluate
the trade-offs between Al-driven and traditional experimental approaches.

1.3. Purpose of the document and target audience

The main objective of the document is to synthesize current Al applications for food safety reported in the
literature as of April 2024, with the aim to assist food safety competent authorities who would like to consider
integrating some in their regulatory activities. It is crucial for those competent authorities, especially those
in LMICs, to stay informed of the available Al applications, as these technologies may at some point greatly
enhance their work, while they may pose potential risks and challenges.

While all countries can equally benefit from the responsible use of Al applications in food safety, the level
and availability of data relevant to food safety varies among countries. Food safety competent authorities
in LMICs may find some Al applications to be too dependent on data that do not currently exist in sufficient
amounts. Nevertheless, improving understanding of the potential of Al can empower regulators to leverage
recent advancements, collaborate with experts, and implement effective, data-driven strategies. The
knowledge gained would further strengthen the rationale to improve and streamline the countries’ data
collection strategies for food safety.

For this reason, a scoping review was conducted to explore the diverse applications of Al for various areas
of food safety. Given the context of various socio-economic situations in LMICs, the analysis of preliminary
activities prior to employing high-efficiency Al for food safety competent authorities has been conducted. The
current regulatory landscape surrounding Al deployment in food safety was also included, as it is important
to ensure fair and responsible implementation. Moreover, the boundary conditions which are necessary for
Al to be trustworthy, unbiased, and explainable have been described.

1.4. Methods

The method used for this literature synthesis was a scoping review using the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) framework. The search was performed in Scopus and
restricted to peer-reviewed publications written in English, using the search terms described in Annex 1.
The publication years for the review were initially set from 2004 to 2024 to cover the last two decades.
However, since almost no directly relevant articles were found between 2004 and 2012, the final cut-off
was determined to be from 2012 to 2024. Active learning facilitated the curation of literature using the Al
tool ASReview (ASReview, 2023; Van de Schoot et al., 2021). Conference proceedings and book chapters
were not included in the review.
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e Literature synthesis results

2.1. Overview

The systematic search yielded a total of 133 (out of 783 screened papers; 17 percent) relevant peer-reviewed
publications (Annex 2). Forty papers were published in North America, 42 papers in China, 28 in Europe, 19
in Asia other than China and 4 from Latin America. Deep learning was utilized in 43 papers, while classical
machine learning was employed in 89 papers (with one being unknown).

Studying the identified research papers, three categories were established based on their ultimate purposes /
use goals (Al objectives) related to food safety and the specific hazards or targets they aim to address. These
goals include 1) Al for scientific advice, including laboratory-related activities; 2) Al for inspections, including
border control; and 3) Al for other regulatory activities in the domain of food safety. Within these categories,
studies that looked at various food safety hazards, ranging from microbiological and chemical hazards to
issues of food fraud and authenticity, were analyzed. Table 1 summarizes these objectives and associated
hazards, alongside the Al techniques employed, with concrete examples drawn from the reviewed literature.

IELIERE  Analysis of the literature synthesis

Al objective Al technique

Target/Hazard (#)

Examples

Scientific advice

+ Classification and identification of food-

DL (N=9): CNN, GAN, borne pathogens by Raman spectra

Laboratory testing
and efficiency

and autoencoders

ML (N=15): SVM, RF,
and ANN

DL (N=5): NN and
CNN

ML (N=12): SVM,
ELM, and XGBOOST

DL (N=7): CNN such
as ResNet

ML (N5): SVM

DL (N=1): LSTM
ML (N=1): DT

ARTIFICIAL INTELLIGENCE FOR FOOD SAFETY

Microbiological (24)

Chemical (17)

Fraud/authenticity

(12)

Other (2)

Identifying Shigatoxigenic Escherichia coli
using hyperspectral microscope images

+ Biosensing for rapid pathogen detection in

liquid food to agricultural water

+ Pesticide residue detection using

hyperspectral imaging combined with
machine learning

Identification of unknown chemical
contaminants in food using liquid
chromatography—high-resolution mass
spectrometry and machine learning

+ Dairy fraud identification using Raman

spectroscopy and fusion machine learning

+ Long short-term memory model with

laboratory equipment to predict salmon
storage time



Al objective

Scientific advice

Fundamental
research and risk
factors

Prediction

Efficiency

Al technique

DL (N=2): DNN

ML (N=10): RF and
SVM

DL (N=2): DNN and
MoCo

ML (N=7): RF, BN,
and XGBOOST

DL (N=2): DNN

DL (N=8): DNN and
BERT

ML (N=7): RF, SVM,
and XGBOOST

DL (N=2): CNN

ML (N=8): ANN, RF,
SVM, and XGBOOST

DL (N=2): BP-NN

ML (N=4): RF, NB,
and SVM

ML (N=1): SVM

ML (N=1): XGBOOST

DL (N=1): LSTM

Target/Hazard (#)

Microbiological (12)

Chemical (9)

Fraud/authenticity

2

Other (15)

Microbiological (10)

Chemical (6)

Microbiological (1)

Fraud/authenticity

M

Other (1)

Examples

+ Identifying environmental factors
associated with Salmonella in agricultural
watersheds

+ Identifying farm practice variables
associated with Listeria prevalence in
pastured poultry farms

+ Modelling bioaccumulation of heavy metals
in soil-crop ecosystems and identifying its
controlling factors

+ Pattern recognition based on machine
learning to identify adulteration of oil

+ Identify the confounding factors of
foodborne disease outbreaks or recalls

+ Using text data to examine public opinion of
food safety

+ Predict delay in growth of Salmonella
enteritidis after heat and chlorine treatment

+ Using patterns of whole genome
sequencing data to predict disease
outcome or virulence

* Predict cadmium concentration in rice grain
to support soil management

+ Identification and classification of bacterial
classification using image processing and
distributed computing

+ Non-targeted detection of milk adulteration
using infrared spectra

+ Rapid risk assessment of microbiological
and chemical contamination in rice

ARTIFICIAL INTELLIGENCE FOR FOOD SAFETY
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Al objective Al technique Target/Hazard (#) | Examples

Inspection and border testing

+ Fourier transform near-infrared / DNA

Testin DL (N=1): ResNet Fraud/authenticity barcodes with machine learning without
g ML (N=1): SVM 2 damaging the product to check for
authenticity of mushroom or fish
. + Predicting which imported foods pose an
Prediction ML (N=1): RF Other (1) increaseg’ b Safefy o P
+ Trade data analysis to make a priority list
Prioritization ML (N=2): RF Other (2) for hazards or risk assessment of imported

food

+ Species identification of food-
Efficiency ML (N=2): RF and BN = Other (2) contaminating beetles
Enhanced border inspection of imported fish

Activities of competent authorities

+ Source attribution (Salmonella) using

ML (N=1): RF Microbiology (1) sequencing data

Prediction
ML (N=3): BN, RF, . ) - . o
and XGBOOST Chemical (3) Prediction of mycotoxin contamination
ML (N=1): DT Chemical (1) + Pattern detection of vet drug residues

Fraud/authenticity

M

ML (N=1): LDA « ldentification of beeswax adulteration

Prioritization

ML (N=4): RF and
log-linear maximum | Other (4)
entropy

+ Using text data from e-invoices to screen
for food safety risks

+ Utilizing text data from social media to
Efficiency DL (N=1): BERT Other (1) examine consumer perception of alternative
proteins

ANN = artificial neural network; BERT = bidirectional encoder representations from transformers; BN = Bayesian network; BP-NN = back
propagation neural network; CNN = convolutional neural network; DL = deep learning; DNN = deep neural network; DT = decision tree;
ELM = extreme learning machine; GAN = generative adversarial network; LDA = linear discriminant analysis; LSTM = long short-term
memory; ML = (traditional) machine learning; MoCo= momentum contrast technique; NB = naive Bayes; NN = neural network; ResNet =
residual network; RF = random forest; SVM = support vector machine; XGBOOST = extreme gradient boosting.

Source: Authors’ own elaboration.

ARTIFICIAL INTELLIGENCE FOR FOOD SAFETY



2.2. Applications of artificial intelligence in food safety
management

2.2.1. Scientific advice for food safety

A total of 115 papers applied Al in the domain of scientific advice for food safety. Among them, 55 papers
examined how Al can aid scientific advice by improving the accuracy, speed and efficiency of laboratory testing.
Forty papers focused on the use of Al to aid risk assessment and management to be used in scientific advice.
Al to enable prediction to aid in scientific advice was examined by 17 papers. The remaining three papers
focused on using machine learning to improve the efficiency and speed in the domain of scientific advice.

Machine learning can aid various laboratory testing processes to be less expensive and more efficient. For
instance, He et al.,, (2022) employed a support vector machine and an artificial neural network to detect
pesticide residues in red wine using fluorescence sensing data, eliminating the need for the usual complex
pretreatment procedures. Furthermore, beef adulteration detection has been demonstrated by using deep
learning-aided spectroscopy (Jo et al., 2023).

More fundamental research investigating the causes of contamination of food or the food environment with
microbes, mycotoxins or heavy metals or foodborne disease in general has also relied on Al. For example,
Camardo Leggieri, Mazzoni, and Battilani (2021) examined the influence of meteorological factors on
mycotoxin levels in fields using a deep neural network. Zhang et al,, (2021) used extreme gradient boosting to
assess how to best recognize suspected outbreaks of foodborne disease, which could in the future possibly
alleviate the burden on medical staff and food safety regulators. Understanding the causes of food safety
hazards or foodborne diseases could inform foresight to ensure a safe food environment.

In addition to examining possible causes, Al has been used to make predictions of food safety hazards. For
instance, Tanui et al., (2022) utilized a random forest model to predict the virulence of specific Salmonella
strains in ground chicken through whole genome sequencing. Additionally, other studies have used machine
learning in order to predict the presence of contaminants such as mycotoxins or heavy metals in foods (Wang,
Liu and van der Fels-Klerx., 2022; Mi et al., 2023; Huang et al., 2023; Ma et al., 2023c; Marzec-Schmidt et al.,
2021; Liu et al.,2021). Such predictions could facilitate more targeted, evidence-based monitoring. For example,
if unusually warm temperatures are indicative of higher pesticide residue due to increased pest activity, food
safety authorities could better target their monitoring efforts, thus gaining more value from the effort.

Use case 1. Electronic nose

Gongalves et al. (2023) used an electronic nose based on ionogel composites in
combination with principal component analyses and several classifier algorithms
to differentiate Salmonella from different microorganisms. Depending on the media

microorganisms were incubated on, the classifier algorithms had an accuracy of
85 to 100 percent for the discrimination of Salmonella. The authors stated that the
proposed electronic nose methodology offers a simple and more cost-effective
alternative to traditional microbiological analysis for detecting Salmonella in food. It
has the potential to complement existing diagnostic methods by reducing analysis
time, costs, and the number of manipulation steps required.
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2.2.2. Inspection and border control

Seven papers used Al in the domain of inspection and border testing. Of these papers, two focused on
testing and efficiency. One paper examined prediction in the domain of inspection and border testing, two
papers on prioritization and two papers on efficiency.

The use of Al to aid food safety in the domains of inspection and border control has received less attention
than in the field of scientific advice. Traditional machine learning methods such as random forests were
mostly used to assess possible frauds, product authenticity and general food safety.

In the field of inspection, Al can be applied to verify the authenticity of food products such as mushrooms
or fish (Liu et al., 2023; Kusuma and Nurilmala, 2016) and to identify contaminating beetle species (Bisgin
et al., 2018). The application of Al in these areas has the potential not only to enhance the accuracy and
speed of inspections but also to reduce the reliance on manual labour, which can be costly, time-consuming
and prone to human error.

Several studies have looked at the application of Al in border control. Machine learning was used to predict
the risk of imported foods (Wu et al., 2023a) and imported fish (Tu et al., 2024). Furthermore, machine
learning was used to build models to prioritize which products should be sampled when crossing country
borders (Talari et al., 2024; Wu et al., 2023a). Such models could greatly enhance food safety management
by increasing the likelihood of detecting high-risk products, ensuring that a greater number of hazardous
items are identified before they reach consumers. This targeted approach not only boosts the effectiveness
of food safety protocols but also leads to cost savings. By better targeting samples that are likely to pose a
risk, resources could be allocated more efficiently, cutting down on unnecessary testing, likely leading to and
allowing for quicker response times. Additionally, the use of Al-driven models could streamline operations,
making the border control process more efficient and responsive. However, it is important to recognize that
the implementation of such technologies must comply with existing national or Supranational regulations
and control protocols, which may limit or shape their practical application at borders.

Use case 2. Prediction for prioritization in imported food control

Wu et al. (2023) aimed to use a machine learning approach to determine whether
quality control sampling should be performed on imported food at the border. A newly
developed ensemble learning prediction model was compared to a previously used
model with random sampling. For cases flagged for inspection by the ensemble
learning prediction model, the non-compliance rates of the foods were up to three
times higher compared to those identified through random sampling. Al-powered
border control could enhance risk prediction capabilities and allow for quick
adaptation to new trends in response to changes in the international environment.
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2.2.3. Efficiency for activities of competent authorities

The use of Al to assist in the activities of competent authorities was the subject of 11 papers. Four of these
papers focused on using machine learning for prediction. A further six papers examined how machine
learning can be used in prioritization strategies. A final paper examined efficiency in the activities of
competent authorities.

Al was also found to be applied in foodborne disease outbreak investigations and surveillance, as well as
general operational competent authority activities in the area of food safety. Traditional machine learning
techniques such as random forests and gradient boosting were typically used. For example, several studies
have used machine learning models in different ways to detect foodborne disease outbreaks (Sadilek et al.,
2017; Sadilek et al., 2018; Chang et al., 2020). In cases of limited capacity, the ability to prioritize resource
allocation becomes crucial. Al-driven models were reported to be able to offer significant value by helping
determine how to best utilize available human and financial resources. For example, when food safety
inspectors face constraints in manpower or time, machine learning models can assist competent authorities
to identify which restaurants or food establishments should be prioritized for inspection by indicating some
key geographical locations or hot spots of concern, where the likelihood of foodborne disease outbreaks
is possibly higher. Furthermore, Al may be developed to provide real-time data analytics and predictive
insights, allowing regulatory bodies to respond swiftly to emerging threats.

The use of text sources like social media posts, news websites, and food recall reports is rapidly advancing.
For example, Chen and Zhang (2022) used language analysis to explore consumers’ food safety perception
of the alternatives to animal-sourced foods. This development presents new opportunities, as potential
food safety hazards or concerns can be identified. By leveraging natural language processing (NLP) and
machine learning, these text sources can be analyzed in real-time to detect emerging threats. This method
may enable quicker responses to consumer concerns.

Use case 3. Smartphone-based syndromic surveillance for outbreak
detection

Sadilek et al. (2018) used aggregated an anonymized search and location data from
smartphones to detect potential sources of food safety problems in real-time. The
method identified the ongoing internet searches on the symptoms of foodborne
diseases from various websites, such as the Wikipedia articles about foodborne
diseases or the governmental websites devoted to foodborne diseases, using a
log-linear maximum entropy model. It then looked up the restaurants visited by

users who made those queries, using their anonymized location histories. For each
relevant restaurant, the model calculated the proportion of users who visited and
subsequently showed the increased interest in information related to foodborne
diseases, hinting at the possibility of having some of the symptoms of the disease.
The findings showed that this approach can improve the identification of problematic
venues by more than threefold compared to current methods and indicated that
health departments can use this tool to more rapidly pinpoint and investigate
locations where outbreaks may be occurring.
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2.3. Algorithms

2.3.1. Algorithm used in reviewed studies

In 133 articles reviewed, a total of 43 distinct Al techniques have been identified. Table 2 shows the selected
common Al techniques used in food safety research, with the relevant explanations and examples of
which articles they have been used in. The techniques can be further categorized as either deep learning
or machine learning methods, though deep learning is a subcategory of machine learning. It is important
to note that, at present, there are no internationally harmonized definitions for the terms listed in Table 2.
Therefore, the explanations provided in the table should not be interpreted as formal definitions. At the top
are the simpler models, such as linear regression, and towards the bottom of the table, the models become
increasingly complex, ending with transformers. The full list of Al techniques found in the literature review
process is available in Annex 3.

With current technological developments, it is possible that by the time that this document is published,
increasingly sophisticated Al models are being studied to address food safety problems. However, in this
literature review, the majority of studies still used traditional machine learning. Model suitability for food
safety research depends on several factors, such as the available data type, the type of problem to address
and the quantity of available data. Deep learning techniques such as neural networks usually require a lot
more data than machine learning-based models (e.g. regression models or support vector machines) (Liang
etal., 2022). As such, careful consideration is essential when selecting an Al model to ensure it aligns with
both the nature of the data and the objectives of the eventual use.

2.3.2. Predictive and generative artificial intelligence

Predictive and generative Al represent two fundamental applications of Al with relevant implications in
the area of food safety. Predictive Al focuses on forecasting events or behaviours based on historical data
(Collins and Moons, 2019). For example, predictive Al with a backpropagation neural network was used to
predict cadmium concentration in rice near an active copper smelter (Mi et al., 2023).

Generative Al is designed to create new data instances that resemble existing data (Feuerriegel et al., 2024).
For example, ChatGPT (Achiam et al., 2023), a chatbot that is arguably the most widely known example of
generative Al, generates coherent and contextually relevant text based on the input it receives, enabling it to
assist with a wide range of tasks based on a large language model called generative pre-trained transformers
(Brown et al., 2020). Generative Al can also be used in various innovative ways within the food safety domain.
For instance, Generative Adversarial Networks (GANs) can simulate realistic contamination scenarios to
train food safety inspectors or develop robust testing protocols (Wang et al., 2024b). Additionally, generative
Al can create synthetic datasets to improve the training of machine learning models without compromising
sensitive information if designed well (Goyal and Mahmoud, 2024). Together, predictive and generative Al
technologies can enhance food safety by enabling more precise risk assessments and creating advanced
tools for monitoring potential food safety hazards.
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eV PA Machine learning (ML) algorithms identified in the papers included in the

literature review

ML algorithms

Regression models

22, v Prediction
o,
0 b’

Feature 2

ad o

Feature 1

Bayesian models

Clustering

Tree-based algorithms

Description

Regression models estimate
the relationship between
dependent variables and
independent variables via

a mathematical function.
Some regression models,
such as LASSO, ridge, and
elastic net, can perform
both variable selection and
regularization to enhance
the prediction accuracy and
interpretability.

Tabular

Bayesian models are
probabilistic models that
represent a set of variables
and their conditional
dependencies via a directed
acyclic graph. Their goal

is to infer the probability

of a variable based on its
conditional dependencies.

Tabular

Clustering groups
measurements such that
measurements in the same
group (i.e., a cluster) are
more similar to each other
than to those in other
clusters.

Tabular

SVMs use kernel functions
to transform data into a
higher-dimensional space
such that the data is linearly
separable in that dimension.

Tabular

Tree-based algorithms
typically construct a
multitude of decision

trees, which make very few
assumptions about the data.
Bagging (such as random
forest, RF) and boosting
(XGBoost, CatBoost) can
be used to improve the
model’s performance by
reducing variance and bias,
respectively.

Tabular

Data Type

Examples from
this review

* LR (Stanoscheck et al.,
2024)

» LASSQO, elastic-net
(Weller et al., 2020)

+ BN (Bouzembrak et al.,
2024),

+ GNB (Talari et al., 2024)

+ Bayesian Gaussian
process regression (Zhu
etal., 2023)

+ kNN (Talari et al., 2024)

« SVM (Al et al., 2024; van
den Bulk et al., 2022)

- RF (Al et al.,, 2024)

+ XGBoost (Zhao, Liu and
Song, 2023)
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ML algorithms

Description Data Type

Examples from

this review

(Deep) artificial neural network (ANN)

8

Convolutional neural network (CNN)

/Input image

Feature map

Kernel

Recurrent neural network (RNN)

fRNN-CeIIs
tO .
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t, @— <:
Transformers
f
= dot product (Ff7
% 3
- e -
s query T
c
2 i) key value
I3 (17 17
< é_’_+
N
input

Explainable Al (XAl)'

]

Neural networks consist of
nodes connected by edges.
Neural networks apply
mathematical functions

to the combination of the
input each node receives.
Deep neural networks have
multiple hidden layers,
ranging from just a couple to
thousands of hidden layers.

Tabular

CNNs learn features

by themselves via filter
optimization. They use
convolutional layers to detect
features and patterns in the
input at different resolutions
in order to make predictions.

Image

RNNs are used for
sequential data processing
using recurrent units. These
units maintain a hidden
state, essentially a form of
memory, which is updated
at each time step based on
the current input and the
previous hidden state.

Sequence

Transformers take input

(like text) and turn it into
numerical units called
tokens. Each token is
converted into a vector using
an embedding table. At

each layer, the transformer
looks at how each token
relates to the others in the
context, using an attention
mechanism that highlights
important tokens and
downplays less relevant
ones. It is the main technique
behind generative pre-trained
transformers (GPT) models
such as ChatT).

Text Image

XAl techniques try to explain
how an Al-based system
came up with a given result.
For example, SHAP (SHapley
Additive exPlanations)
enables visualization of the
contribution of each input
feature to the output.

All data
modalities

« ANN (Al et al., 2024,
Smeesters et al., 2021)

« ELM (Smeesters et al.,
2021)

+ Denoising autoencoder
(Li et al., 2022)

+ AlexNET (Jo et al.,
2023),

« CNN (Chen et al., 2024b)

« ResNet (Chen et al.,
2022a)

- YOLO (Ma et al., 2023b)

- LSTM (He, 2024)

« BERT (Maharana et al.,
2019)

* BERTweet

* RoBERTa (Tao et al.,,
2023)

* LIME, SHAR WIT
(Buyuktepe et al., 2023)

SHAP and other explainable artificial intelligence (XAl) techniques are not machine learning algorithms per se, but post hoc interpretability

methods developed to analyze and elucidate the internal logic and output of trained machine learning models.
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2.3.3. Data types

Table 2 has shown that different Al techniques are suited to different data types. Tabular data can be used
with many Al methods ranging from traditional machine learning models to advanced deep learning models.
Tabular data is data that is organized in a structured, row-and-column format (Hernandez et al,, 2022).
For example, a data file that contains information about the concentration of chemical contaminants in
grains would be tabular data. Specific Al methods such as convolutional neural networks or transformers
can also use images or multimodal data as input. These techniques could, for example, be used to aid in
the automatic analyses of microscopic images for colony counting for specific microorganisms. Lastly,
transformers such as Bidirectional Encoder Representations from Transformers (BERT) (Devlin, 2018) or
ChatGPT can also analyze text as input data to, for example, pick up early warning signals by scraping
social media platforms such as X feeds.

2.3.4. Trends in artificial intelligence research in the area of food
safety

The number of publications that use Al in food safety is steeply increasing, rising from just 1 publication
in 2012 to 28 in 2024 (Figure 2). This growth is expected to continue in the coming years as Al techniques
advance and become more widely available.

m Number of publications using artificial intelligence for food safety research
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0 *—e
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Source: Authors’ own elaboration.

In the literature review conducted, the majority of studies employed traditional machine learning methods
rather than deep learning approaches (Figure 3). There is, however, a noticeable trend showing a rapid shift,
as the number of papers leveraging deep learning for food safety has increased from 2 in 2019 to 18 in
2023. This trend is expected to continue as the potential for deep learning to enhance food safety protocols
becomes more widely recognized. Advancements in computational power, expanded data availability, and
the evolution of Al methodologies are likely to further accelerate this growth, enabling more robust and
real-time solutions for ensuring food safety.
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Number of articles using deep learning for food safety research among
machine learning-based articles included in the present study
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Figure 4 shows that a large number of the articles (59 percent) included in the literature review were from
high-income countries (78 out of 133), followed by 41 percent from upper-middle-income countries (55 out
of 133). Less than 1 percent originated from lower-middle-income countries (1 out of 133), and none were
found from low-income countries.

Income category of the country of origin of the articles identified in the
literature review
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Source: Authors’ own elaboration.
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2.3.5. Summary of the literature review

To summarize the findings of the literature review, the application of Al in food safety was found to be
predominantly focused on supporting the generation of scientific advice. This literature review showed that
Al has been applied to enhance laboratory testing by making it more cost-effective and efficient. Research
using Al has extended to understanding the causes of food contamination and foodborne diseases, thereby
informing preventive measures. Predictive models have been used to help target evidence-based monitoring,
enabling authorities to intensify efforts based on various conditions, such as environmental factors or
historical data.

In inspection and border control, Al has been reported to have the potential to become powerful in verifying
food authenticity and visually identifying contaminants, thereby improving the accuracy and efficiency of
these processes. The potential of Al-driven models designed to detect food safety problem in imported
foods and prioritize border checks to enhance detection rates and optimize resource allocation has been
examined. This targeted approach could potentially streamline operations, reduce possibly unnecessary
testing, and minimize human error.

Additionally, the application of Al to support regulatory activities utilizing real-time analytics to allow swift
responses to emerging threats has been examined. The use of text sources like those found in social media,
news websites, and food recall reports could further enhance food safety monitoring. By analyzing these
sources, Al could identify these potential risks by partially shifting the costs of in vitro analysis laboratories
to human forces involved in the development and maintenance of computer systems, contributing to the
overall efficiency and effectiveness of food safety efforts.
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e Artificial intelligence case
studies for food safety
management

3.1. Overview

In order for food safety competent authorities to understand and learn from some currently developed and
utilized Al applications for food safety management, five agencies, namely the Food Standards Agency
(FSA) of the United Kingdom of Great Britain and Northern Ireland, the Istituto Zooprofilattico Sperimentale
(1ZS) of Italy, the Food and Drug Administration (FDA) of the United States of America, the Singapore Food
Agency (SFA) of Singapore, and the Food Safety Authority of Ireland, have provided case studies on their Al
applications for regulatory activities. While there are many elements to learn from these case studies, they
are not necessarily tested, validated nor endorsed by FAO. They are generously shared by these agencies
for the readers to see the real-life and concrete examples.

3.2. Use cases of traditional and generative artificial
intelligence

The Food Standards Agency (FSA) is a government department working across England, Wales, and Northern
Ireland. The FSA uses both traditional and generative Al to maintain food safety and authenticity.

\lnl } use case. Signals

A lot of the data that the FSA receives is in the form of unstructured text. FSA leverages Al to extract,
standardize, and classify information from this text, enabling the linking of datasets and aggregation of
records to identify trends and risks. Throughout this process, the agency carefully considers the ethical
and legal implications at every stage of the data lifecycle, ensuring compliance and responsible use. To
maintain accuracy and reliability, Al models are continuously evaluated against ground truth data, allowing
the detection of model drift and necessary adjustments over time. Importantly, FSA adopts a “human-in-the-
loop” approach, ensuring that expert oversight remains integral to decision-making and risk assessment.

The Signals workflow (Amanatidou et al., 2024) uses food alerts such as those reported by the European
Union's rapid alert system for food and feed (RASFF), the FDA of the United States of America, or other
competent authorities, in both English and other languages. The data is automatically updated every 24
hours. If necessary, Azure is used to translate the reports to English. A BERT-based model classifies signals
into categories like food, feed or food contact materials, while a sentence encoder generates embeddings
to match products and hazards against preset dictionaries.
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A key example of this system’s effectiveness is the identification of Listeria contamination in Enoki mushrooms.
The Signals team observed a growing number of global alerts for Listeria in these mushrooms, prompting
closer scrutiny despite no reported listeriosis outbreaks in the United Kingdom of Great Britain and Northern
Ireland. Given the serious health risks associated with consuming contaminated raw products, the Imported
Foods Sampling Programme conducted targeted testing through port health and local authorities, ultimately
detecting high levels of Listeria. As a result, additional preventative measures are being implemented to
mitigate future risks.

\lnl } use case. data sampling

Large language models (LLMs) have advanced rapidly in recent years, largely driven by commercial technology
companies such as OpenAl and Google. These models have the potential to enhance the data available to
the FSA, supporting more informed, data-driven decisions and policies. However, they also present risks,
including challenges in verifying the accuracy of outputs and vulnerabilities to prompt injection attacks. To
address these concerns, any project or service incorporating generative Al is assessed against a set of eight
guiding principles. These principles have been adapted from the UK Government’s Generative Al Framework
to ensure responsible and secure implementation. Firstly, there is a need for low risk and low exposure,
ensuring that Al applications are safe and do not pose significant threats. The lifecycle of generative Al
must be carefully managed, with continuous evaluation and regular monitoring to adapt to evolving risks
and needs. It is also essential to use the right tools for each specific task to ensure effectiveness. Security
is a top priority. The application of generative Al must comply with legal and ethical standards, aligning
with FSA policies. Transparency is crucial, and the processes must be open to scrutiny. Finally, a “human
in the loop” approach ensures that expert oversight is maintained, with humans playing a critical role in
decision-making and monitoring.

FSA receives 40 000 analytical test results in the form of reports every year. Extracting key information
from free-text sampling data poses significant challenges, particularly in accurately interpreting contextual
nuances. For example, distinguishing between “No milk protein was detected” and “Milk protein was detected,’
which have opposite meanings. Previously, this process was manual, limiting speed and accuracy. The goal
was to enhance data shareability, improve linkage across datasets, and extract intelligence more efficiently.

To address this, an LLM-based solution was implemented using OpenAl’'s GPT via an existing Azure
subscription to ensure adherence to FSA’s security requirements. The approach incorporated contextual
information to structure the extracted data, transforming it into a tabular format that could be easily
accessed and visualized in dashboards.

\lnl } use case. International Disease Monitoring+ Model

The International Disease Monitoring+ Model is a risk categorization tool to provide risk scores for animal
origin products from specified countries due to microbial risk that FSA uses to inform border check rates
through scientific methodology. Although the model itself does not use Al techniques, the methods used
in the use cases above provide clean and up-to-date data that can be inserted into the model. This allows
model outputs to be produced seamlessly every six months. Since this eliminates the time-consuming task
of manual data cleaning, it enables researchers to spend more time on data analysis.
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3.3. Using machine learning to predict pathogen
adaptation to food sources

The Istituto Zooprofilattico Sperimentale (1ZS) aimed to use a machine learning approach to predict
whether pathogens have adapted to specific food sources based on genomic data (i.e., accessory genes,
core genome alleles, core genome variants and pan genome kmers). This approach would be particularly
valuable for outbreak investigations, where tracing a pathogen back to its food source can be extremely
challenging. If the genotype of a pathogen found in an infected individual could reliably indicate its food
source, it would significantly enhance the response to foodborne disease outbreaks. To explore this, the
IZS trained supervised machine learning models (boosted logistic regression, extremely randomized trees,
random forest (RF), stochastic gradient boosting (SGB), support vector machine (SVM) and extreme gradient
boosting (XGBoost)) to classify Listeria monocytogenes as originating from dairy, fruit, leafy greens, meat,
poultry, seafood and vegetables. Initial results using balanced datasets of Listeria isolated in the United
States of America were promising (Castelli et al., 2023). However, when using unbalanced datasets of samples
isolated in Italy from other sources, accuracy declined sharply. This drop in performance may have been due
to imbalanced elements, such as variations in case distribution across food labels and geographic regions,
as well as potential mislabeling of food sources—an issue that cannot be verified retroactively.

To address these challenges, the team implemented a simplified version of the workflow (i.e. using input
core genome alleles with an extreme gradient boosting model) and streamlined the classification problem
by reducing the number of food categories from six to two: meat and non-meat. This adjustment improved
the model’s accuracy to 85 percent. The resulting expert system was integrated into the 1ZS's bioinformatics
platform, the Italian National Reference Centre for WGS of microbial pathogens (GENPAT), enabling the National
Reference Laboratory to rapidly assess whether a given pathogen is associated with meat or another food
type. Additionally, the importance of publicly available datasets has been emphasized in this case study for
developing machine learning models, especially when local data is limited. In such cases, external datasets can
be used for training, while local data can serve as an independent test set to validate the model’s performance.
Furthermore, IZS advocates for the development and improvement of versatile analytical workflows in supervised
machine learning, enabling users to build models by selecting methods of their choice for key steps such as
data balancing, feature selection, cross-validation-based modelling, and performance evaluation.

3.4. Import sampling prioritization with machine learning

The Food and Drug Administration (FDA) of the United States of America protects public health by ensuring
the safety of the nation’s food supply, cosmetics and radiation-emitting products. It also oversees the safety,
effectiveness and security of human and veterinary drugs, biological products, and medical devices.

\lnl } use case. Import sampling prioritization with machine learning

Every year, millions of food shipments come into the United States of America. On a typical day, there are a
few inspectors in a port of entry that have to choose the right five to seven containers to examine physically
and / or sample. The FDA aims to use machine learning to complement risk-based targeting of food products
and supply chains likely to violate regulations for microbiological or chemical hazards in order to get the
maximum efficiency out of their resources. FDA has opted to focus on classical machine learning instead
of deep learning to be able to better explain their application of the regulations in a transparent manner.

The objective of the machine learning models developed by the FDA is to predict the probability that a sample

will violate regulations. For samples, that means the presence of a hazard being found in the product, and for
inspections, that means a serious violation that requires official regulatory action. This prediction comes in
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two forms: 1) the probability, ranging from 0 to 1, of being non-compliant; and 2) whether that probability is
above a threshold that optimizes sensitivity (i.e. finding all violations) and specificity (i.e. not targeting those
that are in compliance). This threshold can either be chosen by the model based on the training dataset or
set manually by FDA staff. It varies depending on the hazard and resource capacity when deployed.

The FDA assesses model performance by determining model’s ability to accurately predict violations. In addition
to this, overall accuracy is assessed, which looks at how often the model’s predictions are correct. Statistical
significance is also analyzed using a confusion matrix and other statistical tests to ensure that the model’s
performance is not due to chance. Feedback from FDA staff plays a crucial role in determining the practical
value of the model, as it helps assess whether the predictions are aiding in the complex targeting work of the
FDA and supporting the execution of the annual work plan. Lastly, the public health impact is measured by the
volume of violative food removed from commerce and the potential iliness or harm that has been prevented.

Using these principles, the FDA has developed and deployed several hazard-specific models. An example is the
microbiology import model. Here, more than ten years of import data was combined with past oversight and
compliance information and demographic data. A boosted-tree algorithm (LightGBM) was used due to its superior
ability to encode variables and explainability. Further, SHAP values helped explain the magnitude (strength) and
direction (positive or negative) of a feature’s predictive value. This model revealed that out of 600 000 active supply
chains, only 12 percent were predicted to be violative, allowing the FDA to focus their resources. Demographic
variables such as how long a firm has been in business were important predictors of violations.

All models that the FDA develops go through three stages of assessment. First the models are trained and
tested on historic data, which has been randomly assigned to a train or test set using an 80/20 percent split.
If the model performance is good enough, a retrospective analysis will be done, where the model is applied
to all active foreign supply chains. This model is then set aside while natural sampling activities conducted
by the FDA in the field continue as usual. Once sufficient data has been collected, the model's performance
is evaluated using a confusion matrix to assess its accuracy, identifying false positives and false negatives.
A deeper analysis is conducted to determine statistical significance and whether the model performs better
than the baseline. If the model proves to be effective, the process advances to the next stage, prospective
application. Here the model is deployed; and the model predictions are shared with the field staff. These
predictions can help inform decisions at the point of entry, but there is always a human-in-the-loop; and
the models are not dictating sample decisions. The models’ predictions are meant to advise and guide.

In practice, the models show about 70 — 92 percent accuracy when used retrospectively, and their percentages
stay similar or even improve when used prospectively. In the fourth quarter of 2024, 184 samples violating
regulations have been sampled primarily based on model recommendation. This represents 47 million kg
of food, with a declared value of USD 9.1 million. Assuming a 500 g serving size and a 10 percent illness
rate, 9.4 million people did not get harmed thanks to the FDA’s machine learning implementation.

The lessons that the FDA has learned from its machine learning deployment are that data quality is crucial
for accurate predictions. Complete and consistent information, such as up-to-date registrations, product
codes, and manufacturer details, improves model performance, while missing or inconsistent data serve as
red flags. By narrowing the focus, machine learning models identify only about 17 percent of active supply
chains (8 percent of total lines) as potentially violating regulations, allowing the FDA to concentrate on
higher-risk shipments while facilitating trade for the rest.

Machine learning also bridges gaps in surveillance and compliance, revealing that 35 percent of flagged
supply chains had never been sampled before. This dual benefit strengthens both oversight and enforcement.
Additionally, applying machine learning at the supply chain level enables a shift from reactive to proactive
intervention. Problematic shipments can then be removed before outbreaks or recalls occur, while insights
at the industry or country level can guide training and outreach efforts to prevent violations altogether.
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3.5. Proof-of-concept experimentation using language
models for food safety

The whole agrifood system is connected globally; hence, food safety incidents reported around the world
can be useful as early warning indicators of incoming food safety threats. However, the manual monitoring
and analysis of the vast amounts of global food safety news across multiple online sources is labour-
intensive and hinders timely detection of potential risks to Singapore’s food supply chain. The Singapore
Food Agency (SFA) is a statutory board under the Ministry of Sustainability and the Environment. SFA is
the national food agency overseeing food safety and food security in Singapore.

\lnl ? use case. Online food safety news monitoring

Together with the Nanyang Technological University (NTU), SFA co-developed a system that utilises language
models to retrieve, categorise and analyse relevant news articles on food safety from online sources. The
system automatically processes international news and food safety reports, extracting key information such
as affected products, contaminant types, and source countries. It generates structured metadata, enabling
systematic tracking of emerging food safety trends and potential threats.

The Al system has the potential to significantly enhance SFA's food safety surveillance capabilities by
enabling rapid detection of food safety incidents worldwide. Through automated trend analysis, it is able
to support early identification of emerging risks and more targeted testing priorities, strengthening SFA's
ability to proactively protect Singapore’s food supply chain.

\lnl ? use case. Pathogen information tracking

The constant evolution of foodborne pathogens demands effective surveillance through the comparison of
local and global pathogen characteristics. This comprehensive monitoring is crucial for protecting public
health and enabling swift response to emerging threats. However, the manual process of gathering, curating
and analysing pathogen data from scientific literature and multiple databases is labour-intensive and limits
timely detection of food safety risks.

The SFA and NTU collaborated once again to develop an automated system that scans the scientific literature,
using Large Language Models (LLMs) to filter for relevant publications on foodborne pathogens. The system
extracts and systematically curates pathogen data (e.g. Salmonella, Campylobacter and Escherichia coli) into
a comprehensive database. This database enables efficient comparison between local and global pathogen
characteristics, significantly reduces manual processing effort, and supports swift identification of emerging
threats and more targeted food safety risk assessments.

The system significantly reduces manual processing efforts while enabling rapid identification of contamination
sources through enhanced data analysis. By facilitating comprehensive comparison of pathogen characteristics,
it allows for swift identification of emerging threats and persistent issues, strengthening SFA’s ability to
protect Singapore’s food safety.
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3.6. Building human-centric artificial intelligence
systems for emerging food safety risk identification

The early-stage integration of Artificial Intelligence (Al) into food safety systems is becoming more common.
At the Food Safety Authority of Ireland (FSAI), Al is being strategically applied to assist some areas to
anticipate and manage emerging risks more effectively. One of the FSAI's flagship initiatives in this space is
the Emerging Risk Identification and Screening System (ERISS), which harnesses Al technologies to enhance
the Authority’s ability to identify and detect potential threats to food safety and security at an early stage.

\lnl } use case. Emerging risk identification and screening system

Emerging risks, as defined by the European Food Safety Authority (EFSA), encompass newly identified
hazards or significant changes in exposure or susceptibility to known hazards. These can arise from diverse
sources such as climate change, supply chain shifts, novel food technologies, or geopolitical disruptions.
The FSAI's ERISS monitors such developments across a time horizon ranging from six months to twenty
years. Through advanced data analytics and Al-supported screening, the system triangulates intelligence
from a range of scientific publications, digital media, regulatory developments, and global trade patterns
to identify weak signals that may indicate future food safety risks. This approach is in line with Ireland'’s
“National Artificial Intelligence Strategy: Al Here for Good".

To operationalize this approach, the FSAl employs a suite of Al-driven tools. These include literature mining
algorithms for scientific databases, automated digital media monitoring systems, and custom alert systems for
tracking driver trends. The goal is to create a rich and almost real-time view of the emerging risks landscape.
These tools not only allow faster and broader scanning and screening of relevant information but also help
synthesize and summarize complex datasets into actionable insights. Importantly, Al supports, but does not
replace, human expertise within the authority. The ERISS system is structured to be human-centric, with domain
specialists validating any Al outputs and engaging in multidisciplinary review processes to interpret findings.

Beyond horizon scanning, the FSAIl also explored the use of Computer Vision and NLP in regulatory contexts.
For example, the FSAl has conducted pilot projects using Convolutional Neural Networks (CNNs) to automate
the recognition and classification of nutritional information on food labels. Parallel efforts have also tested
text classification algorithms to assist with monitoring digital media for food safety threats, such as food
fraud or consumer reports of adverse health effects.

In another proof-of-concept initiative, the FSAl has developed a bespoke large language model (LLM) using
a retrieval-augmented generation (RAG) framework hosted on Microsoft Azure. This model is designed to
ingest and reason over documents to assist with rapid information identification, retrieval, collation and
summarizing. While promising, these efforts underscore the importance of careful model training, supervised
learning, and continuous ongoing multi-expert validation of outputs to ensure the trustworthiness and
interpretability of any Al-assisted results.

Despite the growing capabilities of Al systems, their use in food safety still requires rigorous expert oversight.
Outputs must be carefully interpreted within the regulatory and scientific context. As such, the FSAl adopts
a cautious, phased approach: these Al tools have been first developed and tested in a sandbox environment,
allowing for experimentation and adjustment without affecting live operations or introducing risks. Only
after thorough testing, expert review, and the establishment of appropriate safeguards are the systems
considered for production-level deployment.

Overall, the FSAl's approach to Al reflects the balance needed in regulatory innovation, leveraging the
efficiency and reach of machine learning and automation, while maintaining the critical role of expert
judgement, ethical design, and transparency. As Al tools mature, they offer the potential to improve food
safety surveillance, regulatory compliance, and consumer protection. However, the responsible deployment
of such tools, underpinned by robust governance and interdisciplinary collaboration, remains paramount.
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e A global regulatory
shapshot of artificial
intelligence frameworks

4.1. Responsible use of artificial intelligence within the
public sector

To harness the potentials and opportunities offered by Al within and beyond the field of food safety, it is
important to be conscious about concomitant challenges and risks. A logical analysis of potential risks,
before jumping into Al use, can help anticipate problems and advance mitigation actions (Tzachor et al.,
2022). Moreover, implementing the appropriate principles in digital ethics is essential for promoting the use
of Al technology to the benefit of humanity and the environment. Given the innovative and complex nature
of Al and the potential risks, a collective reflection is challenging but imperative (RenAlssance Foundation,
2020). In particular, when it comes to the Al use within the government agencies, this is not only a benefit
but also an essential step to follow through (Alhosani and Alhashmi, 2024).

The use of Al in global agrifood systems may entail various types of risks, including data-related limitations
in data acquisition, access, quality and trust. Even more because good data-driven evidence generation
relies on vast amounts of high-quality data. The data on which Al systems are trained can significantly and
unexpectedly change over time, affecting system functionality and trustworthiness (NIST, 2023). To train Al
models, currently available data are often partial, biased, difficult to access, or of poor quality. Additionally,
Al use in data generation raises ethical concerns such as data privacy and ownership, further constraining
data accessibility and reusability.

The Al ethics discussion primarily involves the protection of the rights and the freedom of individuals against
any sort of algorithm discrimination. This is possible when Al systems are designed and implemented to
serve and protect human beings, which is reflected in the need for governments and all Al stakeholders to
commit to developing and respecting frameworks and principles that structure and regulate Al. In this way,
as transparency, traceability and responsibility grow, the risk of it impacting human rights will likely lessen
(RenAlssance Foundation, 2020).

Awareness of the risks that can be associated with improper Al use is essential to put in place mitigation
measures. Among the most efficient risk mitigation options are for the respective governments to develop Al
ethics guidelines and data governance frameworks. These are essential to avoid the technological process
that comes at the expense of ethical integrity, particularly when government use is involved. In this regard,
several national, regional and global governance frameworks for responsible Al have emerged in recent
years. The OECD observatory on Al governance offers a repository of national Al policies and strategies,
gathering over 1 000 Al policy initiatives from 69 countries (OECD.AI, 2021). These initiatives reflect a global
effort to ensure Al development is ethical, transparent, and beneficial to society.
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4.2. Example of preliminary activities conducted by
authorities (as of April 2024)

In Australia, the Office of the Information Commissioner published a guide to data analytics and privacy
principles in 2018 and is developing a national ethics framework for Al standards and conduct (Australian
Government, 2018; Australian Government, 2024). New South Wales has independently created guidance
for regulators and government agencies on Al, emphasizing transparency, community benefit, fairness,
privacy, and accountability (NSW AIAF, 2024).

Canada has adopted Al guiding principles requiring public institutions to incorporate ethical considerations
like privacy and transparency. A Treasury Board directive outlines federal responsibilities for assessing and
mitigating risks of automated decision systems, focusing on transparency and data-driven decision-making
(Government of Canada, 2021). The Montreal Declaration, initiated by the University of Montreal, guides
Al development with principles such as well-being, autonomy, privacy, solidarity, democratic participation,
equity, diversity, caution, responsibility, and sustainable development (Université de Montreal, 2017).

China's 2017 New Generation Al development plan aims to establish Al laws, regulations, and ethical
norms (Webster et al., 2017). In 2019, the Chinese Al Industry Alliance released self-regulation guidelines
promoting human-orientated, secure, and transparent Al (Laskai and Webster, 2019). The New Generation
Al Governance Expert Committee outlined eight non-binding principles for Al development, and in 2023,
measures were drafted to ensure ethical application of generative Al, addressing issues like discrimination,
intellectual property, and personal information use (Seaton et al., 2023).

The European Union's guidelines on Al ethics advocate for lawful, ethical, and robust Al, emphasizing a
human-centric approach aligned with European values (High-Level Expert Group on Al, 2019). Partly entered
into force in 2024, the Al Act is the first-ever comprehensive legal framework on Al worldwide, setting out
clear risk-based rules for trustworthy Al in Europe (European Parliament and the Council of the European
Union, 2024).

India introduced its inclusive Al strategy, #AIFORALL, in 2018, followed by the 2021 Principles for Responsible
Al, which focus on safety, inclusivity, equality, privacy, transparency, accountability, and positive human values
(NITI Aayog, 2018, 2021). The Digital Personal Data Protection Act of 2023 aims to create a comprehensive
legal framework for the digital economy, addressing cybercrime, data protection, online safety, and intermediary
regulation (Ministry of Law and Justice, 2023).

Japan’'s 2017 Al R&D guidelines emphasize ethics, human dignity, and autonomy, while the 2019 Social
Principles of Human-Centered Al further outline ethical considerations in Al development (The Conference
toward Al Network Society, 2017; Council for Social Principles of Human-centric Al, 2019).

Latin American countries are actively developing Al regulations to promote ethical Al development, protect
human rights, and foster innovation. National initiatives in Argentina, Brazil, Colombia, Mexico, Chile, and
Peru focus on Al regulation bills and data protection laws, targeting academia, industry, and civil society
(CPDP Conferences, 2022).

In New Zealand, the Al Forum NZ's Trustworthy Al in Aotearoa Al Principles provide high-level guidance for
Al stakeholders to ensure access to trustworthy Al (Al Forum New Zealand, 2020). These principles offer
a foundation for organizations to develop their own Al ethical principles, focusing on fairness and justice,
reliability, security and privacy, transparency, human oversight and accountability, and well-being.
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The Republic of Korea’s Al Ethical Standards, announced in 2020, are a key part of the National Strategy for
Al. These standards emphasize respect for human dignity, the common good of society, and the proper use
of technology. They include ten core requirements to promote ‘humanity’ in Al: safeguarding human rights,
protecting privacy, respecting diversity, preventing harm, promoting the public good, fostering solidarity,
managing data responsibly, ensuring accountability, maintaining safety, and ensuring transparency (MSIT
and KISDI, 2020).

Rwanda’s National Al policy, developed in 2022, aims to position the country in Al, enhance skills and Al
literacy, create an open ecosystem, transform the public sector, and promote responsible adoption in the
private sector (MINICT, 2022). The policy includes 14 recommendations, such as reskilling, education,
international collaboration, accessibility, public Al service delivery, and responsible Al principles.

In Singapore, the Al Verify Foundation (AIVF) and Infocomm Media Development Authority (IMDA) developed
a draft Model Al Governance Framework for Generative Al with nine dimensions to be looked at in totality
for atrusted Al ecosystem (AIVF and IMDA, 2024). This framework builds on the existing Model Governance
Framework that covers traditional Al, last updated in 2020 (IMDA and PDPC, 2020).

In the United Arab Emirates, the four Dubai principles of ethics, security, humanity, and inclusiveness for
Al were established as part of a collaborative living document to create a common foundation for industry,
academia, and individuals in navigating Al development. Each principle includes sub-principles to clearly
define goals for Al design and behaviour (Smart Dubai, 2018).

In the United Kingdom of Great Britain and Northern Ireland, the Al Security Institute (AISI), part of the
Department of Science, Innovation and Technology, operates as a governmental startup combining
government authority with private sector expertise. Its initiatives focus on testing advanced Al systems,
informing policymakers about risks, fostering collaboration across sectors to mitigate risks, and advancing
publicly beneficial research. Ongoing evaluations address Al misuse, societal impacts, autonomy, and
safeguards (AISI, 2024).

In the United States of America, the United States Artificial Intelligence Safety Institute (US AISI) was
established to advance and disseminate Al safety practices, and support institutions and communities
in Al safety coordination, in collaboration with diverse Al industry and civil society members, as well as
international partners (US AISI, 2025). In California, the proposed bill SB-1047 aims to enact the Safe and
Secure Innovation for Frontier Artificial Intelligence Models Act (Wiener et al., 2024). This bill would require
developers to comply with various safety and security requirements before training Al models, with the goal
of reinforcing existing laws to determine digital content provenance and reduce the impact of deepfakes.
Meanwhile, the 2022 blueprint for an Al Bill of Rights aims to foster innovation and trust in Al by promoting
responsible stewardship of trustworthy Al while ensuring respect for human rights and democratic values.
It complements existing OECD standards and sets a flexible standard for the evolving Al field (OSTP, 2022).

4.3. Global efforts and good practices

On top of national and regional frameworks, international efforts have also been made. The Rome Call for Al
Ethics was signed in 2020 to promote a sense of shared responsibility among international organizations,
governments, institutions and the private sector in an effort to create a future in which digital innovation and
technological progress grant mankind its centrality (RenAlssance Foundation, 2020). The Global Partnership
on Artificial Intelligence (GPAI) is an international initiative that involves multiple stakeholders and aims to
steer the responsible development and utilization of Al, with 29 international members (GPAI, 2024).
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In 2024, the GPAI announced an integrated partnership with the OECD to advance an ambitious agenda for
implementing human-centric, safe, secure and trustworthy Al (OECD, 2024). The United Nations System has
also acted in this space. The UN Systems Chief Executive Board of Coordination (CEB) has developed ten
Principles for the Ethical Use of Al in the United Nations System to provide a basis for UN system organizations
to make decisions on how to develop, design, deploy and use Al systems (CEB, 2022). Additionally, the
General Conference of the United Nations Educational, Scientific and Cultural Organization (UNESCO)
has independently issued a Recommendation on the Ethics of Artificial Intelligence in 2021, followed by a
Readiness Assessment Methodology in 2023 for Al to be utilized, developed, and applied ethically for the
benefit of humanity and our planet (UNESCO, 2021, 2023).

Overall, findable, accessible, interoperable and reusable (FAIR) data frameworks and improved standards
for transparency, ownership rights and oversight, across all phases of data generation, acquisition, storage
and analysis are a necessity for responsible Al (Tzachor et al., 2022). Additionally, privacy and cybersecurity
risks also deserve consideration to address Al trustworthiness characteristics. Therefore, when and if
governments consider use of Al for their work, developing standards and guidelines, or leveraging available
ones, itis a critical prerequisite to reduce security and privacy risks and promote ethical Al implementation
(NIST, 2023). Since recurrent principles such as transparency, security, FAIR data, accountability and
inclusivity are overarching across Al, food safety competent authorities may largely benefit from closely
liaising with their government agencies in other sectors for the guidelines to be the result of a multisectoral
collaboration, and even beyond national borders, in cooperation with relevant international organizations.

4.4, International and multisectoral collaboration and
partnership

International and multisectoral collaborations are found to be key in developing and successfully deploying
Al tools for food safety (Qian et al., 2023). This includes collaborations between universities, companies,
food safety competent authorities, and international organizations. Collaboration fundamentally means
sharing initial investments and technical capacities, as well as fostering an Al-friendly culture. For long-term
sustainability, it will become important to include Al development and Al usage in educational curricula
(Chen et al., 2020b). Furthermore, the UN strongly emphasizes the need for international cooperation and
inclusive, multi-stakeholder partnerships, including with governments, the private sector, civil society, and
academia, to ensure that Al systems are safe, secure, trustworthy, and equitably beneficial, particularly for
developing countries and in support of the Sustainable Development Goals (UN General Assembly, 2024).

Collaboration is also essential in ensuring all relevant opinions are considered but also that all relevant
datasets are included, thus alleviating the risk of bias in the data (Qian et al., 2023). This can be done using
open-source sharing, but, realistically, this is not always possible. Especially in the case of sensitive data,
such as food safety data, sharing of data might not always be feasible (Magdovitz et al., 2021). Fortunately,
methodologies exist for Al systems to optimize without data being disclosed. One of the most promising
techniques for this is federated learning (Koneény, McMahan, and Ramage, 2015). Unlike traditional approaches
that require data to be centralized for model training, federated learning enables the algorithm to travel
to local data sources, or “data stations”, and learn from the data without transferring it. This approach is
metaphorically similar to a train stopping at various stations to collect insights without removing the cargo.
Federated learning is gaining traction in food safety research, where privacy, data ownership, and regulatory
sensitivity are paramount (Fendor et al., 2024).
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e Considerations for the use
of artificial intelligence in
food safety management

5.1. Identify the problem first

When considering the use of Al for food safety in the context of governmental work, it is important to set
out a clear objective to state what problem is to be resolved by developing an Al tool (Domingos, 2012).
Qian et al., (2023) stated that in the context of food safety, it is crucial to recognize that Al is not a universal
solution, but that the focus should be on applications where Al effectively addresses specific needs and
questions. To illustrate the importance of identifying the problem first, Figure 5 shows what the generic
flow of the planning process could look like.

Even though it can be useful to develop algorithms without a specific objective for coding training purposes,
it may sometimes be possible that certain algorithms/devices or machine learning techniques are developed
before identifying a problem to solve. However, considering the substantial requirements of Al applications
to be developed and used within the public systems using the public resources, the sustainability of such Al
tools is questionable without a clear and valuable outcome, which is to solve an existing problem (Zatsu et al.,
2024). Indeed, some studies have recognized that using Al without a clear goal can lead to a waste of time
and resources (Rouger, 2019; Cappaert and Muilwijk, 2023). Even though Al has been creating momentum
with a lot of creative and ad hoc ideas, the use of Al in food safety management is only valuable if it offers
clear net benefits, such as solutions to specific problems.
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Generic flow of the artificial intelligence tool development for food safety

Note that traditional statistical methods often require less data
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5.2. Value of the artificial intelligence tools

For the Al tool to be perceived as valuable to the end user, its user-friendliness is most likely essential (Evans
etal, 2022). For example, generative pre-trained transformers (GPT) have been around since 2018 (Radford
etal.,, 2018), but have been embraced by a critical mass since the launch of ChatGPT in 2022, which has an
intuitive and user-friendly interface. In addition to usability, a successful Al tool typically is also compatible
with existing tools and data (Campos Zabala, 2023). Examples include Copilot from Microsoft, Gemini for
Google, and Siri for Apple. The measurable value of Al tools can typically be in automating a process and
thus saving time or in achieving something with the tool that could not be achieved before. For example,
conventional cancer screening can be improved by developing automated Al tools (Verburg et al., 2022)
utilizing CNNs for the accurate and rapid identification of breast cancer on magnetic resonance images.
An example is the 2024 Nobel Prize-winning Al method AlphaFold (Jumper et al., 2021). AlphaFold is an
Al tool that precisely predicts the 3D structure of proteins and even designs entirely new proteins, thereby
enabling experiments and scientific breakthroughs that were previously unimaginable (Callaway, 2024).
Cancer screening and AlphaFold are typical examples of what the value of Al can be in task automatization
and achieving novel results, albeit in specialized context.

5.3. Value of the artificial intelligence outputs

It is important to consider the value of the outputs that Al tools generate / produce. The reliability of Al
output is important, and by developing Al tools in compliance with data protection standards and minimizing
potential bias, one can govern reliable Al systems (Diaz-Rodrigues et al., 2023).

In machine learning, accuracy is typically assessed in an independent testing dataset to prevent overfitting
(Goodfellow, Bengio and Courville, 2016). Overfitting can be explained as a machine learning model
performing well on the data it is trained on (seen data), but it performs poorly on new or unseen data. A
proper separation of randomized data used for training the model and a holdout dataset for testing the
model (e.g. 70 percent training set and 30 percent testing set) is good practice to manage overfitting and
to ensure reliable, reproducible and robust models are developed. It is important to keep the holdout testing
dataset separate until the very end to prevent unintentional optimization on the testing dataset (Goodfellow,
Bengio and Courville, 2016).

Although a random split such as 70/30 percent is often used, in the case of data encompassing multiple
years, a temporal split, using earlier years for training and more recent years for testing, closely resembles
prospective validation. Of course, prospective validation of an Al model provides even higher evidence (van
Calster et al., 2023). Continuous monitoring of prospective performance furthermore embeds trust in these
systems. This can be done (semi-)automatically or with a human-in-the-loop (Wu et al., 2022).

Furthermore, it is important to note that the data used to train Al models generally have in-built bias based on
where the data were collected and thus the outputs of the Al models would likely have some local adequacy.
This means that the outputs of the model are fit for the specific context of the data that they were trained
on (Ayling and Chapman, 2022). For example, an Al model can be designed to yield reliable and accurate
outputs for a high-income country, but that does not necessarily mean that these outputs would also be
adequate for a low- and middle-income context, and vice versa.
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5.4. Explainable artificial intelligence

Some simple Al models, like linear regression or least absolute shrinkage and selection operator (LASSO),
can easily explain the relationship between input and output, and these are called model-based explanations
(van der Velden et al., 2022). However, deep learning is often seen as a “black box”, since neural networks are
made up of many layers with complex connections, making it very hard to fully understand how the outputs
are produced, even if each layer is specifically examined. Therefore, there are growing concerns that these
black box models may have hidden biases, which can go unnoticed (van der Velden et al., 2022). If such
models directly influence food safety decisions or policies, the eventual impact can become substantial. To
address this, experts support methods to make these systems more understandable (Adadi and Berrada,
2018; Murdoch et al., 2019). Instead, explainable Al (XAl) methods can be used to explain them. One such
method is SHapley Additive exPlanations (SHAP), which explains how much each feature contributes to
the model's output using Shapley values (Shapley, 1953; Lundberg and Lee, 2017).

XAl is a relatively young field, kickstarted by Defense Advanced Research Projects Agency (DARPA) XAl
program of the United States of America in May 2017 (Gunning and Aha, 2019). It has achieved tremendous
uptake among multiple fields (Adadi and Berrada, 2019; Murdoch et al., 2019; van der Velden et al., 2022),
yet it is still not mature enough to, for example, serve as an interrogable tool in a lawsuit (Rudin, 2019).
These aspects also require a proper legal framework. Many jurisdictions have developed such frameworks,
with one example being the European Union’s Al ACT (European Commission Directorate-General for
Communication, 2024).

5.5. Possible pitfalls, challenges and risk management

5.5.1. Artificial intelligence governance challenges

Due to growing concerns about the “black box” of Al, governance of Al has become key, and various legislative
initiatives have started in different parts of the world. Such legislation establishes frameworks and policies
to guide the ethical and responsible development and use of Al (Gyevnar, Ferguson, and Schafer, 2023). It
addresses data quality, privacy, security, transparency, and accountability (both at the data and algorithm
level), preventing misuse, and ensuring public trust. A typical example is removing, or correcting for, bias
from Al systems (Rudin, Wang and Coker, 2020).

One way to promote and facilitate responsible Al is to use XAl, as explained in the previous section (Adadi
and Berrada, 2018). This is crucial in dealing with high-stakes issues, since relevant regulations may be
able to provide individuals the rights to receive meaningful information about how a decision was rendered.
XAl is abundantly used in the field of medicine (van der Velden, 2022) and will likely become more and
more important to yield explanations in food safety. An example of the use of XAl in food safety is Hao
etal, (2024), who used graph representation learning to model and interpret complex relationships between
environmental factors, enabling more accurate and transparent predictions of heavy metal concentrations
in soil-rice systems.

Additionally, given the growing environmental impact of Al technologies, it is crucial to align their development

with sustainability principles; approaches such as green Al aim to reduce computational costs and energy
consumption, making Al both more accessible and environmentally responsible (Bolén-Canedo et al., 2024).
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5.5.2. Biased data and hallucinations of artificial intelligence

Since Al learns from data, biased data can lead to biased Al outcomes, perpetuating or amplifying existing
prejudices. For example, there is concern about unfairness in recidivism prediction in the United States
of America (Rudin, Wang and Coker, 2020). Trust in Al systems can be elevated by the aforementioned
examples of Al governance, responsible Al, and explainable Al. At the same time, it can also be harmed by,
for example, hallucinations of Al or by malefactors. Hallucinations in Al refer to instances where artificial
intelligence models, especially language models, generate incorrect, fabricated, or misleading information
that may seem plausible but is actually not based on any real data or facts (Waldo and Boussard, 2024).
For instance, hallucinations of Al might be details or events that never happened, confident-sounding
answers that are entirely false or nonsensical, or responses that appear coherent but lack factual accuracy.
It is pivotal for Al developers to address these potential threats and for Al users to develop a certain level
of “Al-literacy” (Ng et al., 2021). In a widely discussed incident, the New York Times reported on a lawyer
who used ChatGPT to generate case citations, only to later discover that they were entirely fabricated, or
‘hallucinated’ (Waldo and Boussard, 2024). The potential risk of these hallucinations is highlighted by this
incident, since they are often subtle and can go undetected. Human-in-the-loop, checking sources and
acquiring the aforementioned Al literacy are therefore critical steps to mitigate the risks.

5.5.3. Risk management of wrongdoing

Techniques that can be used by malefactors include adversarial attacks (Kurakin, Goodfellow, and Bengio,
2018). This means that the input data is altered slightly to trick the Al into misclassifying it. These
modifications are often so minimal that they are imperceptible to human observers. However, the Al will
still make a mistake based on this very subtle modification. Another related threat is data poisoning, where
manipulated or misleading data is introduced during the training phase to corrupt the model’s behaviour.
While there are several technical solutions to making Al robust against such wrongdoing (Tramér et al.,
2017), a crucial step towards preventing such wrongdoing is to know your data and to always consider
domain-specific sanity checks.

5.5.4. Premature use of artificial intelligence

The risk of prematurely using Al in food safety, whether by applying techniques that are not yet suitable for
the specific data or problem or by implementing Al without the necessary expertise to interpret its output,
lies in potentially undermining the trust and credibility of the organization employing it (Santoni de Sio and
Mecacci, 2021; Smith, 2018). Maintaining consumer trust in food safety authorities is crucial, as it strongly
influences both food safety practices and purchasing decisions (Chen, 2008). As with all advanced tools,
the ability to determine appropriateness can be a continuous matter of debate. Guardrails for proper Al
use are continuously constructed; nevertheless, it is wise to consult with Al experts before applying such
techniques (Lekadir et al., 2025). Mitigation strategies could include extensive validation of Al in different
contexts, thorough risk assessment (legal, ethical and social), user testing, and appropriate and extensive
documentation.
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5.6. Data governance and data gaps

Data governance involves defining who has authority and control over data and how that authority is exercised
through decision-making on data-related issues (Janssen et al., 2020). One of the best-known examples of
good data governance is FAIR (Wilkinson et al., 2016), which aims to ensure that data are findable, accessible,
interoperable, and reusable (FAIR). Findable data includes metadata, which is descriptive information about
the given data. The availability and the accessibility of data and metadata for both humans and machines
are key. This can include authentication or authorization, especially if the data is sensitive, which can be
the case for food safety data. FAIR does not mean that the data has to be openly available (Wilkinson et al.,
2016). Storing data in standardized formats helps accomplish interoperability. Interoperable means that
both humans and machines are able to use the data.

Reusability of data by others can be achieved by providing good documentation and selecting a proper
sharing license for your data (Wilkinson et al., 2016). At many research centres, such as universities, data
management plans are mandatory (WUR, 2025). This facilitates collection and storage of data in a FAIR
manner. Once data are FAIR, they can be stored online in publicly available repositories such as Zenodo
(European Organization for Nuclear Research and OpenAIRE, 2013) and Harvard Dataverse (King, 2007)
or in data spaces such as the European Union’s Common European Data Spaces (European Commission
Directorate-General for Communication, 2025). Many funders and publishers encourage researchers to publicly
share their research data whenever possible after publishing their research papers (Wendelborn, Anger,
and Schickhardt, 2024). Data sharing is a part of the Open Science philosophy, which aims for transparent
and accessible knowledge that is shared and developed through collaborative networks (Vicente-Saez
and Martinez-Fuentes, 2018). Ensuring that data is FAIR (and shared whenever possible) will significantly
advance Al-driven research in food safety. By making data widely available, researchers, including those who
lack the resources to collect their own datasets, can still conduct meaningful studies, thereby contributing
to the collective progress of the field.

5.7. Public algorithm sharing mechanisms

In recent years, the practice of sharing algorithms has become increasingly prevalent. This shift is in
part driven by the desire for greater collaboration and transparency within the research and development
communities. Open-source platforms such as GitHub (GitHub, 2025) or GitLab (GitLab, 2025) have become
central hubs where developers and researchers across the globe can share, modify, and build upon each
other's code. By making algorithms publicly available, these platforms enable others to replicate studies,
verify results, and contribute to improvements. Other platforms like Docker Hub (Docker, 2025) and Anaconda
Hub (Anaconda, 2025) are dedicated to hosting transportable images of algorithms that can be transferred
between operational systems to contribute to the exchange and reproducibility of algorithms.

Additionally, Al community platforms like Hugging Face (Hugging Face, 2025) have emerged as popular
spaces where researchers, developers, and companies can share pre-trained models, datasets, and tools.
Hugging Face offers an extensive library of state-of-the-art Al models, including NLP models that can be
fine-tuned and adapted for various applications, from sentiment analysis to text generation. These platforms
foster a collaborative environment, enabling individuals and organizations to accelerate the development
of Al models and reduce the duplication of efforts. It is important to check that models are developed or
governed by trusted sources.

Tech companies have also contributed significantly to the open-source movement, particularly in the
realm of deep learning. Meta Al, for example, developed the PyTorch framework, which has become one
of the most widely used tools in deep learning (Patel, 2017). PyTorch has rapidly gained popularity due to
its flexibility, ease of use, and strong support for research-oriented tasks. Regarding Python libraries, it is
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important to note that PyTorch is designed for deep learning (Paszke et al., 2019), whereas scikit-learn is
primarily used for machine learning (Pedregosa et al., 2011). By making PyTorch open-source, Meta Al has
allowed researchers and developers to access and modify the framework, fostering innovation across a
variety of industries, from healthcare to finance (Patel, 2017).

Alongside PyTorch, TensorFlow, developed by Google, is another widely used open-source framework that
has played a major role in democratizing access to deep learning tools. In parallel with these code-based
platforms, zero-code and no-code Al tools are also gaining traction, further democratizing access to Al
technologies. Tools such as Google's AutoML, Microsoft's Lobe, IBM Watson Studio, and Teachable Machine
allow users to build, train, and deploy Al models through visual interfaces without writing a single line of
code. These platforms enable subject-matter experts, educators, and small business owners to apply Al
to real-world problems without the need for advanced technical expertise. By lowering the barrier to entry,
no-code tools contribute to broader participation in Al development and innovation. Such public sharing
mechanisms are pivotal to the continued growth of the Al field, ensuring that advancements are not only
built upon but also scrutinized, improving the overall quality and ethical standards of the technologies
being developed.

5.8. Artificial intelligence literacy and capacity
development

Al literacy can be defined as the basic competencies to know and understand, use and apply, as well as
evaluate and create Al (Ng et al., 2021). The development of Al literacy through training and education is
a critical step to prepare for a future in which Al will likely play an increasingly large role in food safety
management. The development of Al capacity is essential before integrating Al in food safety management.
Without this foundation, individuals and organizations would risk implementing Al systems that are ineffective,
unreliable, or unable to generate meaningful insights from complex food safety data, thereby compromising
the potential benefits of Al (Diaz-Rodriguez et al., 2023). It is furthermore important for training and education
to include responsible data management and use (Frugoli, Etgen, and Kuhar, 2010).

5.9. Support for data-driven decision-making

5.9.1. Required data for artificial intelligence development

When considering the development of Al applications to solve a defined problem, one of the first steps is
to identify the relevant data that are already existing and readily accessible (Zatsu et al., 2024). Having a
sufficient amount and appropriately high-quality data is an essential basis for Al applications, because such
data is necessary to effectively train and validate Al models (Liang et al., 2022). In the area of food safety,
the whole food supply chains from production through retail to consumers within the agrifood systems
have, in theory, a great potential in generating large volumes of data that can feed into Al applications (Rugji
et al., 2024). The outputs from such Al tools could be applied to various food safety-related assessment,
prediction, categorization and prioritization methodologies so that they can be useful in proactive risk
management actions and data-driven decision-making for the competent authorities (Strawn et al., 2013).

Data can be structured or unstructured and can be in the form of raw data such as numeric data, texts,
images, audio and / or video, or can be obtained from secondary sources such as existing databases.
However, if the relevant dataset does not exist in sufficient quantity or high quality, or if it is not readily
accessible, then developing Al applications might not be appropriate, especially because the amount and
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quality of required input data cannot be predicted beforehand to estimate the model performance (Zatsu
etal.,2024). Once an adequate dataset has been identified or built, the next step is to assess the data quality
and governing structure, including the ownership of the data as well as the legal and ethical considerations
of the collected data (Rugji et al., 2024). The legitimacy of the data also needs to be evaluated together with
the sensitivity assessment for responsible Al development (NIST, 2023).

Potentially sensitive information contained in the data may be securely removed or anonymized before
use and can be verified for correctness and completeness. To streamline the data governance assessment
processes, having a comprehensive Al policy as a prerequisite activity may be useful, and part of such a policy
can be dedicated to ensuring the responsible use of data for Al applications actions (Tzachor et al., 2022).

With the presence of such a structure, it is important that ethical compliance is assessed through human
supervision to guarantee proper use of data as well as adherence to relevant laws. Furthermore, transparency
assurance is important, availing information to data providers on how their data are used and the resulting
Al system’s outcome. Experts in data protection and other relevant legal matters can be designated to work
with the Al development team to follow through on ethical responsibility.

Box 1. Checklist for data requirements for responsible \/
artificial intelligence

Does the required dataset exist?

Who owns the dataset?

Is the use of the dataset allowed by the owner in a sustainable manner?
Is the dataset accessible?

Is the dataset legally and ethically usable?

Is the source of the data credible, and is the dataset reliable?

Are there any sensitivity issues in the dataset / parameters? If yes, is it
manageable?

Is the dataset sufficient in its amount?
Is the quality of the data sufficiently high?
Is the data structure appropriate for Al applications?

Can the use of data be transparent and sustainable?

L]
[
L]
[
[
[
[
[
[]
L]
L]
L]

Is there a need to pre-process / improve / optimize the dataset prior to
Al development?
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5.9.2. Quality of data

It can be considered that data quality is more important than its quantity in Al applications. Figure 6 illustrates
general components of quality data standards. Accuracy of Al learning models is highly dependent on the
quality of data. However, obtaining uniform and high quality food safety data is often a challenge due to the
complexity and diversity of agrifood systems. Because of this, imbalanced, heterogenous, skewed or missing
data may occur, and this can affect the performance of the Al algorithms (Qian et al., 2022). Additionally,
diversity of food matrices leads to a variety of data types because various protocols and testing methods
exist. For example, on-site contaminant detection emphasizes efficiency and portability, while laboratory-
based contaminant detection focuses on accuracy and precision. Sample sizes also affect the overall data
quality. Also, as negative (safe) results are not usually reported publicly, there is a possibility that data may
be already skewed with positive (unsafe) results that are reported and documented.

Another key factor in maintaining the quality of data is bias reduction. For example, when using data from
social media to predict public opinion of a given novel food, it is not possible to capture all the behavioural
and demographic factors by the gathered data (Deng, Cao and Horn, 2021). This introduces bias into the
Al model, so data selection must be performed in a balanced manner or artificially rebalanced through
computational methods. Concerted efforts can be made to ensure standardized approaches to the collection,
analysis and sharing of data.

Preprocessing the data can contribute to data consistency, thus potentially improving and optimizing the
data to train the Al models. For preprocessing, the data can be optimized to extract the essential parameters
only. It is a common practice in Al applications to build models with many parameters at first, as this helps
verify the ability of the model to capture underlying patterns and associations. However, in classical machine
learning approaches such as logistic regression, it becomes important to limit the number of parameters to
only those that are essential. This practice prevents overfitting and ensures that model performance does
not deteriorate due to excessive complexity (Friedman, 1997).

Box 2. Questions to validate if the data meets the data
standards

4 Is the dataset of sufficient quality and quantity?

e Can the dataset be split into sufficiently large training and test
sets?

Is the dataset fit for the problem? (examine descriptives)

Is metadata available?

Does the dataset meet ethical and legal standards?
e Does the dataset meet FAIR standards?

Does the dataset contain known biases?

Does the dataset pass a sensitivity check / does the output comply
with sensitivity regulations?
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General components of data quality standards

COMPLETENESS
Is all the required
data present?
UNIQUENESS ACCURACY

Are all features How well does the
unique? data reflect reality?

DATA

QUALITY

VALIDITY TIMELINESS

Is the data Is the data
valid? up to date?

CONSISTENCY

Is the data
consistent?

Source: Authors’ own elaboration.

Box 3. Options for improving / preprocessing data for
artificial intelligence

Standardizing the data collection approaches
Increasing the sample sizes
Addition / removal of parameters

Bias reduction

+ 4+ 4+ 4+ 4+

Sensitivity management
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5.9.3. Data gaps and preparedness for artificial intelligence
development

It is more than possible for many countries to have only a limited amount of food safety data sets that
are currently available and digitalized, and it can create a significant obstacle in the development of Al
applications (Qian et al., 2022). While it is not realistic to aim at effective Al development in this data-gap
situation, working on some key prerequisite activities meanwhile can be useful, as they are in any case
necessary for the steps forward.

Bridging the data gap would most likely involve allocating financial and human resources to establish
effective data generation, collection and consolidation systems, therefore, it can be useful to start exploring
collaborations and partnerships among the relevant government agencies, research institutions, universities
and laboratories, as well as with some reputable organizations to find resource-effective strategies, as
mentioned in the Al policies in the regulatory snapshot chapter. Developing a strategy to nurture a data-
sharing culture between public and private sectors is also one of the forward-looking activities for future Al
development. Development of the national Al policy to be applied in the food safety sector is also considered
to be a good practice for responsible Al, and referring to the examples introduced in the regulatory snapshot
chapter can be a good starting point.

Box 4. Example prerequisite activities for artificial
intelligence development in case of data gap

Explore collaborations and partnerships to establish effective data
collection systems

Strategize to develop a data-sharing culture between public and private
sectors

Develop an Al policy document, including an ethical and responsible Al
strategy

Capacity development training for food safety competent authorities on
privacy data protection, awareness and data literacy

Technical training on Al applications currently used for food safety in
the public sector

Development of combined expertise in food safety, data analytics and Al
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e Tips for food safety
competent authorities

Food safety competent authorities who wish to benefit from Al applications to improve the effectiveness
and efficiency of their work may like to consider following tips provided by some early adopters.

6.1. Consider some key activities to be completed first

Before implementing Al, it would be valuable and almost essential for food safety competent authorities to
assess the Al governance framework within the country context. Various Al institutes, as well as national
and regional bodies, emphasize the importance of ethical and responsible Al use. Many of these guidelines
highlight key principles, including transparency, inclusivity, accountability, impartiality (lack of bias), reliability,
and respect for user and data privacy (RenAlssance Foundation, 2020; GPAI, n.d.; OECD, 2024; CEB, 2022;
UNESCO, 2021, 2023). Transparency is a very common central theme among multiple guidelines, as Al
systems and their output production processes are often invisible; thus, clear explanations are necessary in
away that is accessible to relevant stakeholders. Ensuring that Al systems and the data they rely on comply
with legal and regulatory requirements, including intellectual property laws, is also a critical consideration.

Example actions

¢ Review the Al governance framework within the country to fully understand ethical and responsible
Al use. If there is no policy, consider developing one.

e Hold a stakeholder meeting to discuss the governance issues with various sector experts to understand
what needs to be done from the government side prior to developing Al applications.

e Consult international knowledge resources to understand the trend in Al applications to understand
how transparency can be maintained.
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6.2. Assess the current capacity for artificial intelligence
development

Adequate Al capacity for the development and application of Al tools has been described as a critical step
in order to ensure responsible Al usage (Ng et al., 2021). Therefore, evaluating whether such capacity is
in place before deploying Al is important. If there is a limitation, enhancing education and literacy in data
science, computer science, and design thinking will enable food safety professionals to communicate more
effectively across disciplines and articulate specific needs (Qian et al,, 2023).

Furthermore, several organizations have emphasized the importance of ensuring that the Al tools can be
sustained after their initial development (US AISI, 2025; Université de Montreal, 2017). For example, the
American Artificial Intelligence Safety Institute (AISI) states sustainable development as one of their five
value-based principles (US AISI, 2025). Likewise, sustainable Al development is one of the seven principles
of the Montreal Declaration for Responsible Al (Université de Montreal, 2017). Including Al development
and usage in educational curricula could be considered as an important tool to promote the long-term
sustainability of Al (Chen et al., 2020b).

Example actions

e Consider holding an expert consultation meeting to discuss the national capacity in Al and relevant
fields.

e Collaborate with academic partners (e.g. university professors) to conduct research on the current
national status of Al development in general as well as in the area of food safety.

e Consult academic partners and higher education authorities to review the educational curriculum on
Al and relevant fields.

6.3. Ensure the readiness of data

Before developing and using an Al tool, food safety competent authorities will likely need to evaluate the
training data to determine its representativeness and / or the presence of potential biases. For example,
the Japanese government has documented that such efforts should be made to prevent the creation of
unbalanced datasets of humankind that could result from an Al model trained on biased data (Council for
Social Principles of Human-centric Al, 2019).

The FAIR principles can provide a good approach to help ensure data and metadata are easy to locate, with
clear access conditions, even for sensitive data (Wilkinson et al., 2016). Interoperability is achieved through
standardized formats, enabling both humans and machines to use the data. Reusability depends on proper
documentation and appropriate licensing).

Example actions

e Consider adopting relevant principles like FAIR; and sharing data to advance Al-driven food safety
research.

e Strategize effective data standardization and responsible data sharing for future Al development in
the field of food safety.
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6.4. Step back and take a strong agrifood systems
approach

Agrifood systems include the entire range of actors and their interlinked value-adding activities and involve
the entire food supply chain, as well as the broader economic, societal and natural environments in which
they are embedded (FAQ, 2018). The importance of a systems approach is demonstrated by the European
Geographical Bovine Spongiform Encephalopathy Risk Assessment (GBR), which integrated multiple
factors, such as trade patterns, surveillance capacity, and national feed and farming practices, to evaluate
and manage Bovine Spongiform Encephalopathy (BSE) risk. By accounting for both external challenges
and the internal stability of national systems, the GBR enabled preventive, risk-based decision-making at
national and international levels (Salman et al,, 2012).

The agrifood systems are complex, and every part of the system may have a completely different way to
manage, communicate and store data. Therefore, using Al to create a holistic model of the global agrifood
system to assess food safety aspects has been reported to have great potential benefits (Nayak and
Waterson, 2019). Because of the complexity of the global food system, it has been suggested a system-
of-systems approach may be used, where systems are modelled both at the micro and macro level first
to eventually form a holistic model (Nayak and Waterson, 2019). In this way, one system’s success can
positively influence surrounding systems, and many different actors within the system may benefit from
various Al applications at the same time.

Example actions

e Hold an internal meeting with various colleagues in the agency / authority to discuss possible interests,
needs and opportunities for jointly developing Al applications.

e Listupissues/ problems that may be addressed by Al and share with colleagues and partner agencies
who may share the same issues / problems.

6.5. If the data is not ready, consider generating quality
data for a long run

When evaluating the training data, it is possible to conclude that the data sets are possibly biased, insufficient
in amount, or not easy / ready to be accessed, thus not suitable for use for Al (Schwartz et al., 2022). If this
happens, this means the Al development using the data sets will not succeed, as the outputs will become
unreliable. In this case, food safety competent authorities may like to consider it as an opportunity to
review and improve the mechanisms of relevant data generation, collection and consolidation (Alhosani
and Alhashmi, 2024). Although the data generated and collected through the revised mechanism would
not be immediately useful for Al development, maintaining such mechanisms to collect high-quality data
will likely result in the improvement of food safety activities (EFSA, 2018). And in the long run, this may
contribute to a better opportunity for future Al applications.

Example actions

e Redirect the final goal from development of Al to improvement of food safety situations to focus on
quality data collection.

e Highlight the issues with the data sets that are not Al-ready so that they can be used as valuable
lesson-learned material.
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6.6. Actively collaborate with various stakeholders for
artificial intelligence development

Several guidelines have emphasized the importance of having strong and effective partnerships among
stakeholders, including private sectors, government agencies and academia at all national, regional and
international levels, to work together in Al development (The Conference toward Al Network Society, 2017,
Council for Social Principles of Human-centric Al, 2019; Webster et al., 2017). Such cooperation would foster
innovation while helping to mitigate potential risks associated with Al deployment (AISI, 2024).

Example actions
¢ Look for and join a pilot programme to develop Al in the related public health fields.

e Consider developing regional networks on Al for food safety to discuss the current status and pipeline
applications that may benefit various countries in the region.

e Consult international organizations such as FAO to obtain good practices and lessons learned, as
well as to learn about the methods to assess the feasibility of using Al for food safety management.
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e Conclusions and the way
forward

This document has explored the integration of artificial intelligence (Al) into food safety management,
highlighting both the significant opportunities and the pressing challenges. Al tools have so far shown
potential to support a range of food safety activities, including scientific advice, inspection, border control
and other relevant activities typically carried out by food safety competent authorities. However, the effective
and responsible use of Al demands robust Al governance frameworks, high-quality data, cross-sectoral
collaboration, and an inclusive approach that leaves no one behind.

The literature synthesis, case studies, and regulatory insights presented in this document collectively
emphasize that, for food safety competent authorities, Al is not a goal in itself but a means to enhance the
efficiency and timely responses for food safety activities to achieve public health protection, sustainability
and resilience of agrifood systems. Those competent authorities can identify and define clear problems that
Al may be able to assist with, assess their current capacities, and invest in fundamental elements such as
data readiness and human capital development. Moreover, ethical and responsible use of Al are the priority
issues for the public sectors to mitigate risks like bias, data misuse, and hallucinations, ensuring that Al-
based decisions remain trustworthy and explainable.

Moving forward, key actions that can support the responsible and effective deployment of Al in food safety include:

e Strengthening Al governance and ethical frameworks: Governments and relevant stakeholders can
collaborate and continue to develop, adopt, and update Al governance frameworks that emphasize
transparency, accountability, fairness, and human rights.

e Building Al literacy and capacity: Food safety competent authorities can invest in capacity development,
including training on Al fundamentals, data science, and risk communication, to ensure that staff can
understand, evaluate, and oversee Al systems effectively.

e Improving data systems: High-quality, interoperable, and ethically governed data are essential. Authorities
can work to bridge data gaps through partnerships, data-sharing initiatives, and the adoption of FAIR
principles.

e Encouraging collaboration: Collaboration among public sector agencies, academia, the private sector,
and international organizations is crucial for sharing knowledge, experiences, and best practices in
Al development and deployment.

e Adopting a systems approach: Given the complexity of agrifood systems, Al would be best applied if it
is done within an integrated framework, through systems thinking, that considers interactions across
the entire food value chain, thereby enhancing risk-based decision-making and promoting sustainability.

In conclusion, while Al holds greater transformative potential for the future of food safety, its implementation
must be grounded in rigorous governance, shared knowledge, and ethical responsibility. FAQ, in collaboration
with various partner agencies, remains committed to supporting countries in navigating this evolving
landscape, ensuring that Al serves as a tool for building safer, more efficient, more sustainable, more resilient
and more inclusive agrifood systems.
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Annex 1. Search Strategy

Introduction

This annex describes a strategy literature synthesis on the use of Al in food safety.

Scope

The PRISMA framework was chosen for scoping reviews for developing this review.

Bias management

To minimize the risk of bias, a balanced team composition was ensured. The team consisted of a gender and
nationality balanced group of expert researchers from WFSR and FAO. The gender balance was 4/5 (80 percent)
female, 1/5 (20 percent) male. The team members originated from three continents (Africa, Asia, Europe).

Databases

Scopus (Elsevier) was used for the search. Only peer reviewed journal publications were included. The
publication years for the review were initially set from 2004 to 2024 to cover the last two decades. However,
since almost no directly relevant articles were found between 2004 and 2012, the final cut-off was determined
to be from 2012 to 2024.

Search string

Concept and the linked search terms used for the bibliographic search

Concept Search terms
Al in Food Safety ((“artificial intelligence” ) OR ( “machine learning” ) ) AND ( “food safety”)
Limitations

As the period of publications had an upper time limit of April 1st, 2024, by the time of publication of the
document in 2025, there can be more relevant articles which were not . Searches were performed for Title
and Abstracts, and Keywords/Topic/ldentifiers. The language of the body of the publication was limited to
English. Editorials, opinions, reviews, abstracts, conference proceedings and all other works not representing
original work were not be included in the core selection, yet some of these were retained for use (e.g. reviews).

Data storage

Records: Mendeley libraries, raw and edited excel spreadsheets.

Al assisted literature search

For the main search, ASReview was be used (ASReview, 2023; Van de Schoot et al., 2021). ASReview guarantees
a optimal procedure of literature review and is commonly accepted (used in 317 papers in three years).
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P of origin P technique(s) Learning
Ahmed et al., 2013 USA Scientific advice Efficiency SVM no
Al et al., 2024 Turkey Scientific advice Prediction ANN RF SVRMLR | no
Atas, Yardimci and — . .
Temizel, 2012 Turkey Scientific advice Laboratory testing | SVM no
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Bisgin et al., 2018 USA Inspectlon & el Efficiency ANN SVM no
testing
Bolinger et al., 2021 USA Scientific advice Prediction RF no
Bouzgmbrak i Netherlands | Scientific advice Research BN no
Marvin, 2019
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Mazzoni and Battilani, Italy Scientific advice Research DNN yes
2021
Chang, et al., 2020 Taiwan Regulatory aspects = Prioritization RF no
Chen et al., 2020a China Scientific advice Research unclear unclear
Chen et al., 2022 China Scientific advice Laboratory testing = ResNet yes
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Chung, Weller and USA Scientific advice Laboratory testin RF no
Kovac, 2020 ytesting
L . . XGBOOST
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Darwish et al., 2022 France Scientific advice Laboratory testing = SVM no
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technique(s)

RF SVM

fusion-net
RF

GAN SHAP MLP
XGBOOST RF

DT NN

ResNet viz.

GA
RF
LDA

log-linear
maximum entropy

log-linear
maximum entropy

CNN

DCNN ResNet

SVM ANN

ELM LDA

BERT LSTM SVM
SVM RF

XGBOOST kNN
SVM RF

CNN ResNet

ML

SVM

SVM XGBOOST

XGBOOST SVM
kNN RF AdaBoost
M:P

RF

Deep
Learning

no

yes

no

yes

no

yes

no

no

no

no

yes

yes

no

no

yes

no

no

yes

no

no

no

no
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Country
of origin

Machine learning
technique(s)

Deep

Paper Learning

Topic

Tao et al., 2023

Thao et al., 2023

Tonda, Reynolds and
Thomopoulos, 2023

Toro et al., 2022

Tsakanikas et al., 2016

Tu et al., 2024

van den Bulk et al.,
2022

Vangay et al., 2014

Wang, Greenwood and
Klein, 2021

Wang et al., 2022

Wang, Liu and van der
Fels-Klerx, 2022

Wang et al., 2023

Wang et al., 2024a

Weller et al., 2020

Weller, Love and
Wiedmann, 2021a

Weller, Love and
Wiedmann, 2021b

Wu and Weng, 2021

Wu et al., 2023b

Wu, et al., 2023a

Xiang et al., 2023

Xie, et al., 2022

Xu et al., 2022

USA

Vietnam

France

Chile

Greece

China

Netherlands

USA

USA

Netherlands

Netherlands

China

China

USA

USA

USA

Taiwan

China

Taiwan

China

China

China

Scientific advice

Scientific advice

Scientific advice

Scientific advice
Scientific advice

Inspection & border
testing

Scientific advice

Scientific advice

Scientific advice

Scientific advice

Scientific advice

Scientific advice

Scientific advice

Scientific advice

Scientific advice

Scientific advice

Inspection & border
testing

Scientific advice

Inspection & border
testing

Scientific advice

Regulatory aspects

Scientific advice
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Research

Research

Research

Research

Laboratory testing

Efficiency

Prediction

Research

Prediction

Research

Prediction

Laboratory testing

Laboratory testing

Prediction

Research

Research

Prioritization

Laboratory testing

Prediction

Research

Prediction

Efficiency

BERTweet,
RoBERTa, BIiLSTM,
MGADE

MoCo

RF

RF

SVR

Ensemble

NB SVM

RF SVM etc

ANN

SVM XGBOOST

RF

SVM BP-NN RF
multiple inv SVM
SVM kNN
XGBOOST LASSO

etc.

NN RF LASSO
SVM etc

RF SVM etc

RF BN GBM

kNN, RF, SVM,
PLS, CNN

RF BN GBM

RF SVM
RF XGBOOST

LSTM XGBOOST
GBM

yes

yes

no

no

no

no

no

no

no

no

no

yes

no

no

no

no

no

yes

no

no

no

yes



Paper Country Tobic Machine learning Deep
P of origin P technique(s) Learning
Yamamoto et al., 2021 Japan Scientific advice Laboratory testing | SVM no
. L . . ENR SVR
Yan et al., 2020 China Scientific advice Laboratory testing XGBOOST no
Yan et al., 2021 China Scientific advice Laboratory testing | decision tree no
Yang et al., 2022 USA Scientific advice Laboratory testing | NN no
Yietal., 2023 USA Scientific advice Laboratory testing | CNN yes
Zhang et al., 2021 China Scientific advice Research XGBOOST no
Zhang et al., 2022 USA Scientific advice Research /ngthe learning no
Zhang et al., 2023a USA Scientific advice Laboratory testing | Multiple no
Zhang et al., 2023b China Scientific advice Research LSTM MLP SVM yes
gggg' HINEITE EDTE, China Scientific advice Laboratory testing = XGBOOST no
Zheng, Gracia and Hu, USA Scientific advice Research RF no
2023
Zhong et al., 2021 China Scientific advice Laboratory testing | LSTM yes
Zhu et al., 2023 China Scientific advice Research CART SVR no
Zuo et al., 2022 China Scientific advice Research Dengisiig yes
Autoencoder

ANN-= artificial neural network; AFINN= adaptive fuzzy inference neural network; BERT = bidirectional encoder representations from
transformers; BiLSTM= bidirectional LSTM; BN = Bayesian network; BP-NN= back propagation neural network; CART= classification
and regression tree; DCNN = deep convolutional neural network; DFNN= deep feedforward neural networks; DT NN= deep tensor neural
network; ELM= extreme learning machine; ENR= elastic net regression; FL= fuzzy logic; FNN= feedforward neural network; GA= genetic
algorithm; GAN= generative adversarial network; GBM= gradient boosting machine; kNN= k-nearest neighbors; LASSO= |least absolute
shrinkage and selection operator; LDA= linear discriminant analysis; LIME= local interpretable model-agnostic explanations; LSTM=
long short-term memory; MGADE= multi-grained adverse drug events detection network; ML = (traditional) machine learning; MLP=
multilayer perceptron; MLR= multiple linear regression; MMI= maximum mutual information; MoCo= momentum contrast technique;
PLS= partial least squares; RF= random forest; RoOBERTa = robust optimized BERT pretraining approach; SHAP= SHapley Additive
exPlanations; SSL= self-supervised learning; SVM= support vector machine; SVR= support vector regression; XGBOOST= = extreme
gradient boosting; YOLOv4= you only look once version 4.

Source: See References.
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Annex 3. Artificial intelligence

techniques mentioned in
the reviewed articles and
Wikipedia

artificial neural
network (ANN)

AlexNet

Bayesian network
(BN)

bidirectional encoder
representation from
transformations
(BERT)

BERTweet

convolutional neural
networks (CNN)

decision tree (DT)

ANN consists of nonlinear statistical data modeling tools that are
based on biological neuron models to mimic the intelligent system in
the human brain (Al et al., 2024).

Wiki: An ANN consists of interconnected artificial neurons that
process signals through weighted connections. Organized into
layers, these networks transform inputs through activation functions.

AlexNet is a type of CNN with an architecture capable of extracting
features from spectral information (Jo et al., 2023).

Wiki: AlexNet is a convolutional neural network architecture.

BN has its origin from Bayesian statistics and decision theory
coupled with graph theory. They are a class of probabilistic models with
the structure consisting of nodes (i.e., random variables) that are
connected by directed arcs showing a dependence structure between
the nodes (Bouzembrak et al., 2024).

Wiki: A Bayesian network is a probabilistic graphical model that
represents a set of variables and their conditional dependencies via a
directed acyclic graph.

BERT is an unsupervised DL language model often trained on large
text corpus (Maharana et al.,, 2019).

Wiki: BERT is a language model which learns to represent text as
a sequence of vectors using self-supervised learning. It uses the
encoder-only transformer architecture.

BERTweet is a variant of BERT trained to classify relevant data from
Twitter (Tao et al., 2023).

Wiki: No Wikipedia page. Type of BERT.

CNN is a type of DL model that uses one or more layers of fully
connected neurons (He, 2024).

Wiki: A CNN is a regularized type of feedforward neural network that
learns features via filter (or kernel) optimization.

DT model builds a decision tree through a recursive splitting of a
dataset from the most significant predictor variable until a stopping
criterion is met (Talari et al., 2024).

Wiki: A DT is a decision support recursive partitioning structure that
uses a tree-like model of decisions and their possible consequences,
including chance event outcomes, resource costs, and utility.
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n Al technique Explanation found in the relevant article Category

deep
learning
(DL)

DL

machine
learning
(ML)

DL

DL

DL

ML



n Al technique

1

1

1

0

1

N

deep convolutional
neural network
(D-CNN)

denoising
autoencoder (DAE)

Elastic net

extreme gradient
boosting (XGBoost)

extreme learning
machine (ELM)

extremely randomized
trees (ExtraTrees)

Explanation found in the relevant article

Category

This model consists of five convolutional layers followed by a three-

layer perceptron. The convolutional layer is used for the extraction of
adjacent features, with the maximum pooling layer used after each
convolutional layer to enhance the generalization ability of the model = DL
(Chen et al., 2024b).

Wiki: No Wikipedia page. Type of CNN.

DAE is an ANN that works in an unsupervised manner. It could
efficiently reduce the redundancy of the input data as well as encode
it. DAE is often used for dimensionality reduction and to compress
data so as to remove noise and to learn advanced features from the
original input data (Li et al., 2022). bL
Wiki: An autoencoder is a type of ANN used to learn efficient codings

of unlabeled data (unsupervised learning). A DAE is trained by

intentionally corrupting the inputs of a standard autoencoder during
training.

Elastic net model combines the strengths of lasso and ridge
regression models by using a ridge-type penalty to regularize and a
lasso-type penalty to select features (Weller et al., 2020). ML
Wiki: Elastic net is a regularized regression method that linearly

combines the L1 and L2 penalties of the lasso and ridge methods.

XGBoost algorithm is a powerful and efficient ML method suitable for
data with complex structures. It is based on gradient boosted trees
and has several advantages including regularization for preventing
overfitting, a built-in routine to handle missing values, a parallel
processing for faster computation, and an in-built cross-validation
(Zhao, Liu & Song, 2023). ML
Wiki: Gradient boosting is a machine learning technique based on

boosting in a functional space, where the target is pseudo-residuals
instead of residuals as in traditional boosting. It gives a prediction

model in the form of an ensemble of weak prediction models which

are typically simple decision trees.

ELM is a type of ML method that can be operated with randomly

assigned weights to cater for the hidden layer. It can use neurons

together with the rectified linear unit (ReLU) for function activation

and as a regularization factor of 10- 2 (Smeesters et al., 2021).

Wiki: ELMs are feedforward NNs for classification, regression, ML
clustering, sparse approximation, compression and feature learning

with a single layer or multiple layers of hidden nodes, where the

parameters of hidden nodes (not just the weights connecting inputs

to hidden nodes) need to be tuned.

ExtraTrees in ML methods consist of multiple decision trees. It has a
high discrimination ability when compared to random forest and can
be less prone to noise in a dataset (Chung et al., 2022).

Wiki: RF is an ensemble learning method for classification, regression
and other tasks that works by creating a multitude of decision trees
during training. In the case of ExtraTrees, each tree is trained using
the whole learning sample and the top-down splitting is randomized.
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n Al technique

14

15

16

17

18

19

20

fully connected neural
network (FCNN)

Fusion-Net

fuzzy logic (FL)

Gaussian naive Bayes
(GNB)

Gaussian progress
regression (GPR)

k-nearest neighbors
(kNN)

least absolute
shrinkage and
selection operator
(LASSO)

Explanation found in the relevant article

FCNN in DL methods is capable of learning complex relationships. It
has hundreds of neurons and multiple hidden layers and has found
wide applications in predicting molecular properties as well as
toxicity (Gao et al., 2022).

Wiki: No Wikipedia page. Type of NN with every neuron in one layer
connecting to every neuron in the next layer.

Fusion-Net as a type of DL method has multiple forms of predictors
for use with, for example, spectra and band images (Park et al., 2023).

Wiki: No Wikipedia page. Type of deep fully residual CNN.

FL is a form of Al capable of analysing vague and inaccurate data
and help with important decision making (Mavani et al., 2024).

Wiki: FL is a form of many-valued logic in which the truth value of
variables may be any real number between 0 and 1.

GNB uses Bayes' theorem in predicting the probability of a data point
belonging to a given class (Talari et al., 2024).

Wiki: A naive Bayes model assumes the information about the class
provided by each variable is unrelated to the information from the
others, with no information shared between the predictors. GNB
assumes continuous features follow a Gaussian distribution.

GPR in ML methods was proposed by O'Hagan and is based on
Bayesian analysis as well as statistical learning theory. It is suitable
for handling nonlinear regression issues with high-dimensional and
small-sample size (Zhu et al., 2023).

Wiki: Gaussian process is a stochastic process, such that every
finite collection of those random variables has a multivariate normal
distribution. Inference of continuous values with a Gaussian process
prior is known as GPR.

kNN is a form of a non-parametric method that works by finding the
K nearest data points in reference to the test point and by using their
average or majority vote, make the predictions (Talari et al., 2024).

Wiki: The kNN algorithm is a non-parametric supervised learning
method. An object is classified by a plurality vote of its neighbors,
with the object being assigned to the class most common among its
k nearest neighbors.

LASSO is a regression methos that uses a penalty like ridge
regression, although in this case, coefficient estimates of 0 are
allowed (Weller et al., 2020).

Wiki: LASSO is a regression analysis method that performs both
variable selection and regularization in order to enhance the
prediction accuracy and interpretability of the resulting statistical
model. The lasso method assumes that the coefficients of the linear
model are sparse, meaning that few of them are non-zero.

ARTIFICIAL INTELLIGENCE FOR FOOD SAFETY

Category

DL
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n Al technique

21

22

23

24

25

26

27

latent dirichlet
allocation (LDA)

local interpretable
model-agnostic
explanations (LIME)

linear discriminant
analysis (LDA)

Log-linear maximum
entropy model

logistic regression
(LR)

long short-term
memory neural
network (LSTM)

momentum contrast
technique (MoCo)

Explanation found in the relevant article

Category

LDA is a model that can be applied in processing rapidly changing
information in the media (Rortais et al., 2021).

ML
Wiki: LDA is a Bayesian network for modeling automatically extracted
topics in textual corpora.

LIME trains an understandable model by using new data points
weighted according to how they are close to the original points
(Buyuktepe et al., 2023). ML
Wiki: LIME is an explainable Al technique that approximates locally a
model’s outputs with a simpler, interpretable model.

LDA is often trained using regularized, pooled covariance matrices
(Smeesters et al.,, 2021).

Wiki: LDA is a generalization of Fisher's linear discriminant to find a
linear combination of features that characterizes or separates two
or more classes of objects or events. The resulting combination may
be used as a linear classifier, or, more commonly, for dimensionality
reduction before later classification.

ML

A log-linear maximum entropy model can estimate an anonymized
search query based on the probability that the query belongs to a
particular class (Sadilek et al., 2017).

Wiki: The principle of maximum entropy states that the probability ML
distribution which best represents the current state of knowledge

about a system is the one with largest entropy, in the context of

precisely stated prior data. In the case of maximum entropy models

the observed data itself is assumed to be the testable information.

LR is a classical classifier in ML often used to analyse labeled
sample data (He, 2024). It returns the probability of a case
belonging to a particular class, for example, either Class 0 or Class 1
(Stanosheck et al., 2024).

Wiki: A logistic model is a statistical model that models the log-odds
of an event as a linear combination of one or more independent
variables. Logistic regression estimates the parameters of a logistic
model (the coefficients in the linear or non linear combinations).

LSTM in DL methods has a special variant (recurrent neural network)
and is less prone to gradient disappearance and explosion (He, 2024).
DL
Wiki: LSTM is a type of recurrent neural network aimed at mitigating
the vanishing gradient problem.

MoCo is a contrastive self-supervised learning technique with the
capability for generating high-quality latent representations for
input images from unlabeled data. This technique help overcome
the challenges of training learning models with general and
discriminative features (Thao et al., 2023).

. . . . . . DL
Wiki: In self-supervised learning a model is trained on a task using
the data itself to generate supervisory signals, rather than relying on
externally-provided labels. Contrastive self-supervised learning uses
both positive and negative examples in the training data and use
the loss function to minimize the distance between positive sample
pairs, while maximizing the distance between negative sample pairs.
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n Al technique

28

29

30

31

32

33

34

multilayer perceptron
(MLP)

multiple linear
regression (MLR)

neural network (NN)

partial least squares
discriminant analysis
(PLS-DA)

partial least squares
regression (PLSR)

quadratic
discriminant analysis
(QDA)

random forest (RF)

Explanation found in the relevant article

Multilayer Perceptron (MLP) consists of feedforward supervised
neural network system. It consists of an input layer, an output layer,
and an arbitrary number of hidden layers. The basic MLP has a single
hidden layer. Neurons use nonlinear activation functions, either
sigmoid, hyperbolic tangent, or Rectified Linear Unit (ReLU) (Nogales,
Diaz-Morén & Garcia-Tejedor, 2022).

Wiki: MLP is a feedforward neural network consisting of fully
connected neurons with nonlinear activation functions, organized in
layers, notable for being able to distinguish data that is not linearly
separable.

MLR in ML techniques uses a straight line in estimating the
relationship between the dependent variable and the several
explanatory variables (Al et al., 2024).

Wiki: MLR is a model that estimates the linear relationship between a
scalar response (dependent variable) and more than one explanatory
variables.

NN is executed using sigmoid as activation function and hidden
layers with numerous small processing units known as neurons. The
neurons provide inputs for generating inter-connected outputs and
identification of specificities more easily (Smeesters et al., 2021).

Wiki: A neural network consists of interconnected artificial neurons
that process signals through weighted connections. Organized into
layers, these networks transform inputs through activation functions.

PLS-DA is a predictive model based on the classical PLSR method
with advantages such as noise reduction and variable selection (Kim
et al., 2022)

Wiki: Type of PLSR used when the dependent variable is categorical.

PLSR method can relate two data matrices through establishment of
a linear multivariate mode (Zhu et al., 2023).

Wiki: PLSR is a statistical method that finds a linear regression
model by projecting the predicted variables and the observable
variables to a new space of maximum covariance.

QDA is a form of ML that can use the pseudoinverse of the
covariance matrix to make prediction. (Smeesters et al., 2021).

Wiki: Closely related to LDA, but in in QDA there is no assumption
that the covariance of each of the classes is identical.

RF in ML is a supervised learning regression technique that uses

tree ensemble models. It builds numerous different decision trees in
parallel and gives a prediction of built trees based on an output of the
mean value of the classes (Al et al., 2024).

Wiki: RF is an ensemble learning method for classification, regression
and other tasks that works by creating a multitude of decision trees
during training.
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n Al technique

85

36

S

38

39

40

41

42

residual convolutional
neural network
(ResNet)

RoBERTa

Shapley additive
explanations (SHAP)

support vector
regression (SVR)

support vector
machines (SVM)

U-Net

what-if tool (WIT)

you only look once
version 4 (YOLOv4)

Source: See References.

Explanation found in the relevant article

ResNet is a superior form of DL model capable of overcoming the
problems of vanishing or exploding gradients that results from the
addition of internal residual blocks (Chen et al., 2022a).

Wiki: ResNet is a deep learning architecture in which the layers learn
residual functions with reference to the layer inputs.

RoBERTa model has been used to analyse data form Twitter with
high accuracy. However, limitations have been observed in the

generalization capability in cases of unseen tweets (Tao et al., 2023).

Wiki: No Wikipedia page. Type of BERT.

SHAP model is used to identify the most influential features that
impact the model's decisions. (Buyuktepe et al., 2023).

Wiki: Explainable Al technique: SHAP enables visualization of
the contribution of each input feature to the output. It works by
calculating Shapley values, which measure the average marginal
contribution of a feature across all possible combinations of
features.

SVRis a type of ML with regression performed by kernel functions.
The functions map the input data into a high-dimensional space
using either linear or nonlinear transformations. (Al et al., 2024).

Wiki: An extension of SVM. The model produced by SVR depends
only on a subset of the training data, because the cost function
for building the model ignores any training data close to the model
prediction.

SVM in ML is a powerful technique used for classification and
regression tasks (Talari et al., 2024).

Wiki: SVMs are supervised max-margin models with associated
learning algorithms that analyze data for classification and
regression analysis.

U-Net, also known as U-shaped CNN, has been employed in analysis
involving segmentations (Kang et al., 2020).

Wiki: Type of CNN developed for image segmentation.

WIT is a visual interface used to understand the dataset and the

outputs of ML models operating in a blackbox. It can be used for
effective testing of trained ML models without writing any code.

(Buyuktepe et al., 2023).

Wiki: No Wikipedia page. Explainable Al technique.

YOLOv4 as a DL method has an architecture to enable it to achieve
real-time object detection way above the human perception of 30
frames/second. It has found wide applications in locating and

classifications of, for example, microcolonies. (Ma et al., 2023b).

Wiki: Object detection system based on CNN.

Category

DL

DL

ML

ML

ML

DL

ML

DL
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