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Executive summary

Artificial Intelligence (AI) is increasingly applied in food safety management, offering new 
capabilities in data analysis, predictive modelling, and risk-based decision-making. A review of 
the literature identifies three primary areas of application: scientific advice, inspection and border 
control, and operational activities of food safety competent authorities. Five country examples 
with the real-world use cases illustrate diverse uses of AI tools, including pathogen detection, 
import sampling prioritization, and language models for regulatory data processing.

Regulatory frameworks, as well as voluntary governance, addressing AI in the public sector are 
emerging worldwide. National and international initiatives often highlight the importance of 
data governance, transparency, ethical considerations, and human oversight. Challenges such 
as biased data, explainability, and data governance gaps appear across different contexts, along 
with potential risks from deploying AI systems prematurely. Access to high-quality, interoperable 
data and collaboration among stakeholders can support effective integration of AI technologies.

AI readiness often depends on understanding specific problems to be addressed, current capacities, 
and the quality of available data. Human oversight and continuous evaluation contribute to 
maintaining trust in AI systems. Collaborative efforts involving academia, the private sector, and 
international organizations help build shared knowledge and resources for AI development in 
food safety.

Overall, AI presents opportunities to enhance resilience, efficiency, and responsiveness in food 
safety systems. Careful consideration of governance, data management, and multi-stakeholder 
cooperation can shape AI’s contribution to achieving sustainable and equitable outcomes in 
agrifood systems.

Keywords: Artificial Intelligence (AI), food safety, data governance, predictive modelling, 
machine learning, risk-based decision-making, ethical AI, explainable AI, cross-sector 
collaboration, capacity development, AI use case, food safety competent authority.
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1. Introduction

1.1.  Background
Artificial intelligence (AI) has been revolutionizing a wide variety of domains, including finance, marketing, 
manufacturing, transportation, education and healthcare, including food safety (Ding et al., 2023). The 
integration of AI into food safety regulatory frameworks may offer great potential for enhancing regulatory 
effectiveness (Qian et al., 2023). While the United Nations Educational, Scientific and Cultural Organization 
(UNESCO) defines AI systems as “systems which have the capacity to process data and information in a 
way that resembles intelligent behaviour and typically includes aspects of reasoning, learning, perception, 
prediction, planning or control” (UNESCO, 2021), AI can simply be explained as a field of research in computer 
science that focuses on developing and studying methods and software that enable machines to perceive 
their environment, learn from it, and take intelligent actions to maximize the chances of achieving defined 
goals (Russell and Norvig, 2021) (Figure 1). In the context of food safety, the term “AI” typically refers to 
machine learning (ML) and/or deep learning (DL).

Figure 1 	� 

Source: Authors’ own elaboration.

Deep learning

Machine learning

AI

The relationship between artificial intelligence, machine learning and deep 
learning 
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Machine learning is a subset of AI and in general, it uses algorithms to learn from training data and the 
relation is generalizable to unseen data (Koza et al., 1996). In one of the common applications of machine 
learning, researchers or engineers extract characteristics (i.e. features) from raw data and use statistical 
methods to learn patterns (Mohri et al., 2018). For example, a machine learning algorithm may be trained 
on a dataset containing apple colour at various ripeness levels. It can predict the ripeness of a new, unseen 
apple based on colour. While unsupervised machine learning explores data to identify structures without 
predefined labels, supervised machine learning learns from labelled examples and improves with more data. 
Consequently, unsupervised machine learning involves clustering, where samples are grouped based on 
feature similarity, while supervised machine learning focuses on predicting labels from features through 
classification or regression (Jordan and Mitchell, 2015).

Deep learning is a subset of machine learning that uses neural networks with many layers to analyze and 
learn from large amounts of raw data. It enables the AI applications to recognize patterns, make predictions 
and improve their performance with additional data, similar to how humans learn from experience. In this 
way, the explicit extraction of characteristics / features is often no longer needed (LeCun, Bengio and Hinton, 
2015). Deep learning is not strictly a subset of either unsupervised or supervised learning, as it can be used 
in both cases, though it is commonly associated with supervised learning (Yuan et al., 2020). Currently, deep 
learning is used in most state-of-the-art techniques, ranging from unlocking your smartphone with face / 
fingerprint recognition to self-landing rockets (Parloff, 2016). For example, in the context of food safety, 
deep learning algorithms can analyze raw data such as customer reviews and social media posts to detect 
early signals of foodborne disease outbreaks.

1.2.  Relevance to food safety in the agrifood systems
While the importance of food safety is recognized by many, the relevant data generation, collection and 
consolidation may not be easily achieved by many countries, particularly low- and middle-income countries 
(LMICs), hence, the real burden of foodborne disease remains dramatically underreported, which stymies 
public investments in food safety (Grace, 2023). On the other hand, in most high-income countries, vast 
amounts of food safety-related data generated within agrifood systems have been of benefit (Mu et al., 
2024; Qian et al., 2023) for the development of AI applications, particularly within scientific research, in 
predicting and identifying food safety issues, prioritizing them and efficiently carrying out relevant regulatory 
activities in a more efficient manner. High-income countries are witnessing an accelerated adoption of digital 
technologies across all stages, from farm to table. This digitization, while offering numerous benefits in terms 
of efficiency, transparency, and sustainability, also creates new vulnerabilities. Cyberattacks can disrupt 
critical logistics networks, compromise data integrity related to food safety, and lead to the theft of valuable 
intellectual property (Leligou et al., 2024). Data breaches and data manipulation caused by cyberattacks 
may lead to theft of sensitive information, including customer data, financial records, proprietary business 
information (e.g. recipes, processes), or intellectual property (e.g. crop genetics). A critical concern is the 
manipulation of food safety data, either to hide contamination or fabricate evidence of it, potentially causing 
public health crises or severe reputational damage. False data injection can tamper with decisions and 
results (USDA, 2024).

Conventional procedures for ensuring food safety, such as detecting food contamination or adulteration, 
are currently considered by many countries, especially in LMICs, as costly, elaborate, sample destructive,  
time-consuming; and as requiring specialized infrastructure and intensive manual labour (Magnus et al., 2021). 
Also, the use of human senses, such as appearance and smell, for example, to determine the freshness of 
vegetables or meat products is inadequate and may result in variable outcomes. This illustrates the problem 
of noise in subjective judgements (Kahneman et al., 2021). Furthermore, resources are often inefficiently 
allocated to inspections that are not risk-based or fail to prioritize efficiency in their execution.
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High expectations from AI applications are reported in the area of food safety (Deng, Cao and Horn, 2021; 
Taneja et al., 2023). The application of AI in food safety may offer an avenue to develop cost-effective and 
automated systems that are fast and user-friendly procedures for food classifications, quality control, food 
safety assurance, and food grading (D’Amore et al., 2022; Miyazawa et al., 2022). Furthermore, in some food 
testing, the use of AI may reduce the need for rigorous laboratory experiments that require various expensive 
chemical reagents, thus, a strategy that is environmentally friendly with timely results can be potentially 
developed (Sharma and Sawant, 2017). This could lead to proactive approaches in managing food safety 
risks, therefore significantly reducing overall costs of foodborne disease outbreaks and economical losses 
resulting from food recalls, food waste, hospitalization, medications, and deaths in the long run (Pal and 
Kant, 2018). It is important to note, however, the energy demands of large-scale AI systems may carry 
environmental costs; a comprehensive life cycle assessment (LCA) would be necessary to fully evaluate 
the trade-offs between AI-driven and traditional experimental approaches.

1.3.  Purpose of the document and target audience
The main objective of the document is to synthesize current AI applications for food safety reported in the 
literature as of April 2024, with the aim to assist food safety competent authorities who would like to consider 
integrating some in their regulatory activities. It is crucial for those competent authorities, especially those 
in LMICs, to stay informed of the available AI applications, as these technologies may at some point greatly 
enhance their work, while they may pose potential risks and challenges.

While all countries can equally benefit from the responsible use of AI applications in food safety, the level 
and availability of data relevant to food safety varies among countries. Food safety competent authorities 
in LMICs may find some AI applications to be too dependent on data that do not currently exist in sufficient 
amounts. Nevertheless, improving understanding of the potential of AI can empower regulators to leverage 
recent advancements, collaborate with experts, and implement effective, data-driven strategies. The 
knowledge gained would further strengthen the rationale to improve and streamline the countries’ data 
collection strategies for food safety.

For this reason, a scoping review was conducted to explore the diverse applications of AI for various areas 
of food safety. Given the context of various socio-economic situations in LMICs, the analysis of preliminary 
activities prior to employing high-efficiency AI for food safety competent authorities has been conducted. The 
current regulatory landscape surrounding AI deployment in food safety was also included, as it is important 
to ensure fair and responsible implementation. Moreover, the boundary conditions which are necessary for 
AI to be trustworthy, unbiased, and explainable have been described.

1.4.  Methods
The method used for this literature synthesis was a scoping review using the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) framework. The search was performed in Scopus and 
restricted to peer-reviewed publications written in English, using the search terms described in Annex 1. 
The publication years for the review were initially set from 2004 to 2024 to cover the last two decades. 
However, since almost no directly relevant articles were found between 2004 and 2012, the final cut-off 
was determined to be from 2012 to 2024. Active learning facilitated the curation of literature using the AI 
tool ASReview (ASReview, 2023; Van de Schoot et al., 2021). Conference proceedings and book chapters 
were not included in the review.
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2. Literature synthesis results

2.1.  Overview
The systematic search yielded a total of 133 (out of 783 screened papers; 17 percent) relevant peer-reviewed 
publications (Annex 2). Forty papers were published in North America, 42 papers in China, 28 in Europe, 19 
in Asia other than China and 4 from Latin America. Deep learning was utilized in 43 papers, while classical 
machine learning was employed in 89 papers (with one being unknown).

Studying the identified research papers, three categories were established based on their ultimate purposes / 
use goals (AI objectives) related to food safety and the specific hazards or targets they aim to address. These 
goals include 1) AI for scientific advice, including laboratory-related activities; 2) AI for inspections, including 
border control; and 3) AI for other regulatory activities in the domain of food safety. Within these categories, 
studies that looked at various food safety hazards, ranging from microbiological and chemical hazards to 
issues of food fraud and authenticity, were analyzed. Table 1 summarizes these objectives and associated 
hazards, alongside the AI techniques employed, with concrete examples drawn from the reviewed literature.

Table 1 	  Analysis of the literature synthesis

AI objective AI technique Target/Hazard (#) Examples

Scientific advice

Laboratory testing 
and efficiency

DL (N=9): CNN, GAN, 
and autoencoders

ML (N=15): SVM, RF, 
and ANN

Microbiological (24)

•	 Classification and identification of food-
borne pathogens by Raman spectra

•	 Identifying Shigatoxigenic Escherichia coli 
using hyperspectral microscope images

•	 Biosensing for rapid pathogen detection in 
liquid food to agricultural water

DL (N=5): NN and 
CNN

ML (N=12): SVM, 
ELM, and XGBOOST

Chemical (17)

•	 Pesticide residue detection using 
hyperspectral imaging combined with 
machine learning

•	 Identification of unknown chemical 
contaminants in food using liquid 
chromatography–high-resolution mass 
spectrometry and machine learning

DL (N=7): CNN such 
as ResNet

ML (N5): SVM

Fraud/authenticity 
(12)

•	 Dairy fraud identification using Raman 
spectroscopy and fusion machine learning

DL (N=1): LSTM

ML (N=1): DT
Other (2)

•	 Long short-term memory model with 
laboratory equipment to predict salmon 
storage time
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AI objective AI technique Target/Hazard (#) Examples

Scientific advice

Fundamental 
research and risk 
factors

DL (N=2): DNN 

ML (N=10): RF and 
SVM

Microbiological (12)

•	 Identifying environmental factors 
associated with Salmonella in agricultural 
watersheds

•	 Identifying farm practice variables 
associated with Listeria prevalence in 
pastured poultry farms

DL (N=2): DNN and 
MoCo

ML (N=7): RF, BN, 
and XGBOOST

Chemical (9)
•	 Modelling bioaccumulation of heavy metals 

in soil-crop ecosystems and identifying its 
controlling factors

DL (N=2): DNN Fraud/authenticity 
(2)

•	 Pattern recognition based on machine 
learning to identify adulteration of oil

DL (N=8): DNN and 
BERT

ML (N=7): RF, SVM, 
and XGBOOST

Other (15)

•	 Identify the confounding factors of 
foodborne disease outbreaks or recalls

•	 Using text data to examine public opinion of 
food safety

Prediction

DL (N=2): CNN

ML (N=8): ANN, RF, 
SVM, and XGBOOST

Microbiological (10)

•	 Predict delay in growth of Salmonella 
enteritidis after heat and chlorine treatment

•	 Using patterns of whole genome 
sequencing data to predict disease 
outcome or virulence

DL (N=2): BP-NN

ML (N=4): RF, NB, 
and SVM

Chemical (6) •	 Predict cadmium concentration in rice grain 
to support soil management

Efficiency

ML (N=1): SVM Microbiological (1)
•	 Identification and classification of bacterial 

classification using image processing and 
distributed computing

ML (N=1): XGBOOST Fraud/authenticity 
(1)

• 	Non-targeted detection of milk adulteration 
using infrared spectra

DL (N=1): LSTM Other (1) • 	Rapid risk assessment of microbiological 
and chemical contamination in rice
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AI objective AI technique Target/Hazard (#) Examples

Inspection and border testing

Testing
DL (N=1): ResNet

ML (N=1): SVM
Fraud/authenticity 
(2)

•	 Fourier transform near-infrared / DNA 
barcodes with machine learning without 
damaging the product to check for 
authenticity of mushroom or fish

Prediction ML (N=1): RF Other (1) •	 Predicting which imported foods pose an 
increased food safety risk

Prioritization ML (N=2): RF Other (2)
•	 Trade data analysis to make a priority list 

for hazards or risk assessment of imported 
food

Efficiency ML (N=2): RF and BN Other (2)
•	 Species identification of food-

contaminating beetles

Enhanced border inspection of imported fish

Activities of competent authorities

Prediction

ML (N=1): RF Microbiology (1) •	 Source attribution (Salmonella) using 
sequencing data

ML (N=3): BN, RF, 
and XGBOOST Chemical (3) •	 Prediction of mycotoxin contamination

Prioritization

ML (N=1): DT Chemical (1) •	 Pattern detection of vet drug residues

ML (N=1): LDA Fraud/authenticity 
(1) •	 Identification of beeswax adulteration

ML (N=4): RF and 
log-linear maximum 
entropy

Other (4) •	 Using text data from e-invoices to screen 
for food safety risks

Efficiency DL (N=1): BERT Other (1)
•	 Utilizing text data from social media to 

examine consumer perception of alternative 
proteins

ANN = artificial neural network; BERT = bidirectional encoder representations from transformers; BN = Bayesian network; BP-NN = back 
propagation neural network; CNN = convolutional neural network; DL = deep learning; DNN = deep neural network; DT = decision tree; 
ELM = extreme learning machine; GAN = generative adversarial network; LDA = linear discriminant analysis; LSTM = long short-term 
memory; ML = (traditional) machine learning; MoCo= momentum contrast technique; NB = naïve Bayes; NN = neural network; ResNet = 
residual network; RF = random forest; SVM = support vector machine; XGBOOST = extreme gradient boosting. 

Source: Authors’ own elaboration.
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2.2. � Applications of artificial intelligence in food safety 
management

2.2.1.  Scientific advice for food safety
A total of 115 papers applied AI in the domain of scientific advice for food safety. Among them, 55 papers 
examined how AI can aid scientific advice by improving the accuracy, speed and efficiency of laboratory testing. 
Forty papers focused on the use of AI to aid risk assessment and management to be used in scientific advice. 
AI to enable prediction to aid in scientific advice was examined by 17 papers. The remaining three papers 
focused on using machine learning to improve the efficiency and speed in the domain of scientific advice.

Machine learning can aid various laboratory testing processes to be less expensive and more efficient. For 
instance, He et al., (2022) employed a support vector machine and an artificial neural network to detect 
pesticide residues in red wine using fluorescence sensing data, eliminating the need for the usual complex 
pretreatment procedures. Furthermore, beef adulteration detection has been demonstrated by using deep 
learning-aided spectroscopy (Jo et al., 2023).

More fundamental research investigating the causes of contamination of food or the food environment with 
microbes, mycotoxins or heavy metals or foodborne disease in general has also relied on AI. For example, 
Camardo Leggieri, Mazzoni, and Battilani (2021) examined the influence of meteorological factors on 
mycotoxin levels in fields using a deep neural network. Zhang et al., (2021) used extreme gradient boosting to 
assess how to best recognize suspected outbreaks of foodborne disease, which could in the future possibly 
alleviate the burden on medical staff and food safety regulators. Understanding the causes of food safety 
hazards or foodborne diseases could inform foresight to ensure a safe food environment.

In addition to examining possible causes, AI has been used to make predictions of food safety hazards. For 
instance, Tanui et al., (2022) utilized a random forest model to predict the virulence of specific Salmonella 
strains in ground chicken through whole genome sequencing. Additionally, other studies have used machine 
learning in order to predict the presence of contaminants such as mycotoxins or heavy metals in foods (Wang, 
Liu and van der Fels-Klerx., 2022; Mi et al., 2023; Huang et al., 2023; Ma et al., 2023c; Marzec-Schmidt et al.,  
2021; Liu et al., 2021). Such predictions could facilitate more targeted, evidence-based monitoring. For example, 
if unusually warm temperatures are indicative of higher pesticide residue due to increased pest activity, food 
safety authorities could better target their monitoring efforts, thus gaining more value from the effort.

Use case 1.  Electronic nose

Gonçalves et al. (2023) used an electronic nose based on ionogel composites in 
combination with principal component analyses and several classifier algorithms 
to differentiate Salmonella from different microorganisms. Depending on the media 
microorganisms were incubated on, the classifier algorithms had an accuracy of 
85 to 100 percent for the discrimination of Salmonella. The authors stated that the 
proposed electronic nose methodology offers a simple and more cost-effective 
alternative to traditional microbiological analysis for detecting Salmonella in food. It 
has the potential to complement existing diagnostic methods by reducing analysis 
time, costs, and the number of manipulation steps required.

ARTIFICIAL INTELLIGENCE FOR FOOD SAFETY 7



2.2.2.  Inspection and border control

Seven papers used AI in the domain of inspection and border testing. Of these papers, two focused on 
testing and efficiency. One paper examined prediction in the domain of inspection and border testing, two 
papers on prioritization and two papers on efficiency.

The use of AI to aid food safety in the domains of inspection and border control has received less attention 
than in the field of scientific advice. Traditional machine learning methods such as random forests were 
mostly used to assess possible frauds, product authenticity and general food safety. 

In the field of inspection, AI can be applied to verify the authenticity of food products such as mushrooms 
or fish (Liu et al., 2023; Kusuma and Nurilmala, 2016) and to identify contaminating beetle species (Bisgin 
et al., 2018). The application of AI in these areas has the potential not only to enhance the accuracy and 
speed of inspections but also to reduce the reliance on manual labour, which can be costly, time-consuming 
and prone to human error.

Several studies have looked at the application of AI in border control. Machine learning was used to predict 
the risk of imported foods (Wu et al., 2023a) and imported fish (Tu et al., 2024). Furthermore, machine 
learning was used to build models to prioritize which products should be sampled when crossing country 
borders (Talari et al., 2024; Wu et al., 2023a). Such models could greatly enhance food safety management 
by increasing the likelihood of detecting high-risk products, ensuring that a greater number of hazardous 
items are identified before they reach consumers. This targeted approach not only boosts the effectiveness 
of food safety protocols but also leads to cost savings. By better targeting samples that are likely to pose a 
risk, resources could be allocated more efficiently, cutting down on unnecessary testing, likely leading to and 
allowing for quicker response times. Additionally, the use of AI-driven models could streamline operations, 
making the border control process more efficient and responsive. However, it is important to recognize that 
the implementation of such technologies must comply with existing national or Supranational regulations 
and control protocols, which may limit or shape their practical application at borders.

Use case 2.  Prediction for prioritization in imported food control

Wu et al. (2023) aimed to use a machine learning approach to determine whether 
quality control sampling should be performed on imported food at the border. A newly 
developed ensemble learning prediction model was compared to a previously used 
model with random sampling. For cases flagged for inspection by the ensemble 
learning prediction model, the non-compliance rates of the foods were up to three 
times higher compared to those identified through random sampling. AI-powered 
border control could enhance risk prediction capabilities and allow for quick 
adaptation to new trends in response to changes in the international environment.
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2.2.3.  Efficiency for activities of competent authorities
The use of AI to assist in the activities of competent authorities was the subject of 11 papers. Four of these 
papers focused on using machine learning for prediction. A further six papers examined how machine 
learning can be used in prioritization strategies. A final paper examined efficiency in the activities of 
competent authorities.

AI was also found to be applied in foodborne disease outbreak investigations and surveillance, as well as 
general operational competent authority activities in the area of food safety. Traditional machine learning 
techniques such as random forests and gradient boosting were typically used. For example, several studies 
have used machine learning models in different ways to detect foodborne disease outbreaks (Sadilek et al., 
2017; Sadilek et al., 2018; Chang et al., 2020). In cases of limited capacity, the ability to prioritize resource 
allocation becomes crucial. AI-driven models were reported to be able to offer significant value by helping 
determine how to best utilize available human and financial resources. For example, when food safety 
inspectors face constraints in manpower or time, machine learning models can assist competent authorities 
to identify which restaurants or food establishments should be prioritized for inspection by indicating some 
key geographical locations or hot spots of concern, where the likelihood of foodborne disease outbreaks 
is possibly higher. Furthermore, AI may be developed to provide real-time data analytics and predictive 
insights, allowing regulatory bodies to respond swiftly to emerging threats.

The use of text sources like social media posts, news websites, and food recall reports is rapidly advancing. 
For example, Chen and Zhang (2022) used language analysis to explore consumers’ food safety perception 
of the alternatives to animal-sourced foods. This development presents new opportunities, as potential 
food safety hazards or concerns can be identified. By leveraging natural language processing (NLP) and 
machine learning, these text sources can be analyzed in real-time to detect emerging threats. This method 
may enable quicker responses to consumer concerns.

Use case 3. � Smartphone-based syndromic surveillance for outbreak 
detection

Sadilek et al. (2018) used aggregated an anonymized search and location data from 
smartphones to detect potential sources of food safety problems in real-time. The 
method identified the ongoing internet searches on the symptoms of foodborne 
diseases from various websites, such as the Wikipedia articles about foodborne 
diseases or the governmental websites devoted to foodborne diseases, using a 
log-linear maximum entropy model. It then looked up the restaurants visited by 
users who made those queries, using their anonymized location histories. For each 
relevant restaurant, the model calculated the proportion of users who visited and 
subsequently showed the increased interest in information related to foodborne 
diseases, hinting at the possibility of having some of the symptoms of the disease. 
The findings showed that this approach can improve the identification of problematic 
venues by more than threefold compared to current methods and indicated that 
health departments can use this tool to more rapidly pinpoint and investigate 
locations where outbreaks may be occurring. 
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2.3.  Algorithms

2.3.1.  Algorithm used in reviewed studies
In 133 articles reviewed, a total of 43 distinct AI techniques have been identified. Table 2 shows the selected 
common AI techniques used in food safety research, with the relevant explanations and examples of 
which articles they have been used in. The techniques can be further categorized as either deep learning 
or machine learning methods, though deep learning is a subcategory of machine learning. It is important 
to note that, at present, there are no internationally harmonized definitions for the terms listed in Table 2. 
Therefore, the explanations provided in the table should not be interpreted as formal definitions. At the top 
are the simpler models, such as linear regression, and towards the bottom of the table, the models become 
increasingly complex, ending with transformers. The full list of AI techniques found in the literature review 
process is available in Annex 3.

With current technological developments, it is possible that by the time that this document is published, 
increasingly sophisticated AI models are being studied to address food safety problems. However, in this 
literature review, the majority of studies still used traditional machine learning. Model suitability for food 
safety research depends on several factors, such as the available data type, the type of problem to address 
and the quantity of available data. Deep learning techniques such as neural networks usually require a lot 
more data than machine learning-based models (e.g. regression models or support vector machines) (Liang 
et al., 2022). As such, careful consideration is essential when selecting an AI model to ensure it aligns with 
both the nature of the data and the objectives of the eventual use.

2.3.2.  Predictive and generative artificial intelligence
Predictive and generative AI represent two fundamental applications of AI with relevant implications in 
the area of food safety. Predictive AI focuses on forecasting events or behaviours based on historical data 
(Collins and Moons, 2019). For example, predictive AI with a backpropagation neural network was used to 
predict cadmium concentration in rice near an active copper smelter (Mi et al., 2023).

Generative AI is designed to create new data instances that resemble existing data (Feuerriegel et al., 2024). 
For example, ChatGPT (Achiam et al., 2023), a chatbot that is arguably the most widely known example of 
generative AI, generates coherent and contextually relevant text based on the input it receives, enabling it to 
assist with a wide range of tasks based on a large language model called generative pre-trained transformers 
(Brown et al., 2020). Generative AI can also be used in various innovative ways within the food safety domain. 
For instance, Generative Adversarial Networks (GANs) can simulate realistic contamination scenarios to 
train food safety inspectors or develop robust testing protocols (Wang et al., 2024b). Additionally, generative 
AI can create synthetic datasets to improve the training of machine learning models without compromising 
sensitive information if designed well (Goyal and Mahmoud, 2024). Together, predictive and generative AI 
technologies can enhance food safety by enabling more precise risk assessments and creating advanced 
tools for monitoring potential food safety hazards.
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Table 2  Machine learning (ML) algorithms identified in the papers included in the 
literature review

ML algorithms Description Data Type Examples from  
this review

Regression models Regression models estimate 
the relationship between 
dependent variables and 
independent variables via 
a mathematical function. 
Some regression models, 
such as LASSO, ridge, and 
elastic net, can perform 
both variable selection and 
regularization to enhance 
the prediction accuracy and 
interpretability.

Tabular

•	 LR (Stanoscheck et al., 
2024)

•	 LASSO, elastic-net 
(Weller et al., 2020)

 Bayesian models Bayesian models are 
probabilistic models that 
represent a set of variables 
and their conditional 
dependencies via a directed 
acyclic graph. Their goal 
is to infer the probability 
of a variable based on its 
conditional dependencies.

Tabular

•	 BN (Bouzembrak et al., 
2024),

•	 GNB (Talari et al., 2024)

•	 Bayesian Gaussian 
process regression (Zhu 
et al., 2023)

Clustering Clustering groups 
measurements such that 
measurements in the same 
group (i.e., a cluster) are 
more similar to each other 
than to those in other 
clusters.

Tabular •	 kNN (Talari et al., 2024)

Support vector machine (SVM)

SVMs use kernel functions 
to transform data into a 
higher-dimensional space 
such that the data is linearly 
separable in that dimension.

Tabular •	 SVM (Al et al., 2024; van 
den Bulk et al., 2022)

Tree-based algorithms Tree-based algorithms 
typically construct a 
multitude of decision 
trees, which make very few 
assumptions about the data. 
Bagging (such as random 
forest, RF) and boosting 
(XGBoost, CatBoost) can 
be used to improve the 
model’s performance by 
reducing variance and bias, 
respectively.

Tabular
•	 RF (Al et al., 2024)

•	 XGBoost (Zhao, Liu and 
Song, 2023)
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ML algorithms Description Data Type Examples from  
this review

(Deep) artificial neural network (ANN) Neural networks consist of 
nodes connected by edges. 
Neural networks apply 
mathematical functions 
to the combination of the 
input each node receives. 
Deep neural networks have 
multiple hidden layers, 
ranging from just a couple to 
thousands of hidden layers.

Tabular

•	 ANN (Al et al., 2024; 
Smeesters et al., 2021) 

•	 ELM (Smeesters et al., 
2021)

•	 Denoising autoencoder 
(Li et al., 2022)

Convolutional neural network (CNN) CNNs learn features 
by themselves via filter 
optimization. They use 
convolutional layers to detect 
features and patterns in the 
input at different resolutions 
in order to make predictions.

Image

•	 AlexNET (Jo et al., 
2023), 

•	 CNN (Chen et al., 2024b)
•	 ResNet (Chen et al., 

2022a) 
•	 YOLO (Ma et al., 2023b) 

Recurrent neural network (RNN) RNNs are used for 
sequential data processing 
using recurrent units. These 
units maintain a hidden 
state, essentially a form of 
memory, which is updated 
at each time step based on 
the current input and the 
previous hidden state.

Sequence •	 LSTM (He, 2024)

Transformers Transformers take input 
(like text) and turn it into 
numerical units called 
tokens. Each token is 
converted into a vector using 
an embedding table. At 
each layer, the transformer 
looks at how each token 
relates to the others in the 
context, using an attention 
mechanism that highlights 
important tokens and 
downplays less relevant 
ones. It is the main technique 
behind generative pre-trained 
transformers (GPT) models 
such as ChatT).

Text Image

•	 BERT (Maharana et al., 
2019)

•	 BERTweet

•	 RoBERTa (Tao et al., 
2023)

Explainable AI (XAI)1 XAI techniques try to explain 
how an AI-based system 
came up with a given result. 
For example, SHAP (SHapley 
Additive exPlanations) 
enables visualization of the 
contribution of each input 
feature to the output.

All data 
modalities

•	 LIME, SHAP, WIT 
(Buyuktepe et al., 2023)
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1	 SHAP and other explainable artificial intelligence (XAI) techniques are not machine learning algorithms per se, but post hoc interpretability 
methods developed to analyze and elucidate the internal logic and output of trained machine learning models.
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2.3.3.  Data types
Table 2 has shown that different AI techniques are suited to different data types. Tabular data can be used 
with many AI methods ranging from traditional machine learning models to advanced deep learning models. 
Tabular data is data that is organized in a structured, row-and-column format (Hernandez et al., 2022). 
For example, a data file that contains information about the concentration of chemical contaminants in 
grains would be tabular data. Specific AI methods such as convolutional neural networks or transformers 
can also use images or multimodal data as input. These techniques could, for example, be used to aid in 
the automatic analyses of microscopic images for colony counting for specific microorganisms. Lastly, 
transformers such as Bidirectional Encoder Representations from Transformers (BERT) (Devlin, 2018) or 
ChatGPT can also analyze text as input data to, for example, pick up early warning signals by scraping 
social media platforms such as X feeds.

2.3.4. � Trends in artificial intelligence research in the area of food 
safety

The number of publications that use AI in food safety is steeply increasing, rising from just 1 publication 
in 2012 to 28 in 2024 (Figure 2). This growth is expected to continue in the coming years as AI techniques 
advance and become more widely available.

In the literature review conducted, the majority of studies employed traditional machine learning methods 
rather than deep learning approaches (Figure 3). There is, however, a noticeable trend showing a rapid shift, 
as the number of papers leveraging deep learning for food safety has increased from 2 in 2019 to 18 in 
2023. This trend is expected to continue as the potential for deep learning to enhance food safety protocols 
becomes more widely recognized. Advancements in computational power, expanded data availability, and 
the evolution of AI methodologies are likely to further accelerate this growth, enabling more robust and 
real-time solutions for ensuring food safety.

Source: Authors’ own elaboration.

Figure 2 	  Number of publications using artificial intelligence for food safety research
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Figure 4 shows that a large number of the articles (59 percent) included in the literature review were from 
high-income countries (78 out of 133), followed by 41 percent from upper-middle-income countries (55 out 
of 133). Less than 1 percent originated from lower-middle-income countries (1 out of 133), and none were 
found from low-income countries.

Source: Authors’ own elaboration.

Source: Authors’ own elaboration.

Figure 3  Number of articles using deep learning for food safety research among 
machine learning-based articles included in the present study

Figure 4  Income category of the country of origin of the articles identified in the 
literature review
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2.3.5.  Summary of the literature review
To summarize the findings of the literature review, the application of AI in food safety was found to be 
predominantly focused on supporting the generation of scientific advice. This literature review showed that 
AI has been applied to enhance laboratory testing by making it more cost-effective and efficient. Research 
using AI has extended to understanding the causes of food contamination and foodborne diseases, thereby 
informing preventive measures. Predictive models have been used to help target evidence-based monitoring, 
enabling authorities to intensify efforts based on various conditions, such as environmental factors or 
historical data.

In inspection and border control, AI has been reported to have the potential to become powerful in verifying 
food authenticity and visually identifying contaminants, thereby improving the accuracy and efficiency of 
these processes. The potential of AI-driven models designed to detect food safety problem in imported 
foods and prioritize border checks to enhance detection rates and optimize resource allocation has been 
examined. This targeted approach could potentially streamline operations, reduce possibly unnecessary 
testing, and minimize human error.

Additionally, the application of AI to support regulatory activities utilizing real-time analytics to allow swift 
responses to emerging threats has been examined. The use of text sources like those found in social media, 
news websites, and food recall reports could further enhance food safety monitoring. By analyzing these 
sources, AI could identify these potential risks by partially shifting the costs of in vitro analysis laboratories 
to human forces involved in the development and maintenance of computer systems, contributing to the 
overall efficiency and effectiveness of food safety efforts.
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3. �Artificial intelligence case 
studies for food safety 
management

3.1.  Overview
In order for food safety competent authorities to understand and learn from some currently developed and 
utilized AI applications for food safety management, five agencies, namely the Food Standards Agency 
(FSA) of the United Kingdom of Great Britain and Northern Ireland, the Istituto Zooprofilattico Sperimentale 
(IZS) of Italy, the Food and Drug Administration (FDA) of the United States of America, the Singapore Food 
Agency (SFA) of Singapore, and the Food Safety Authority of Ireland, have provided case studies on their AI 
applications for regulatory activities. While there are many elements to learn from these case studies, they 
are not necessarily tested, validated nor endorsed by FAO. They are generously shared by these agencies 
for the readers to see the real-life and concrete examples.

3.2. � Use cases of traditional and generative artificial 
intelligence

The Food Standards Agency (FSA) is a government department working across England, Wales, and Northern 
Ireland. The FSA uses both traditional and generative AI to maintain food safety and authenticity.

 use case. Signals
A lot of the data that the FSA receives is in the form of unstructured text. FSA leverages AI to extract, 
standardize, and classify information from this text, enabling the linking of datasets and aggregation of 
records to identify trends and risks. Throughout this process, the agency carefully considers the ethical 
and legal implications at every stage of the data lifecycle, ensuring compliance and responsible use. To 
maintain accuracy and reliability, AI models are continuously evaluated against ground truth data, allowing 
the detection of model drift and necessary adjustments over time. Importantly, FSA adopts a “human-in-the-
loop” approach, ensuring that expert oversight remains integral to decision-making and risk assessment.

The Signals workflow (Amanatidou et al., 2024) uses food alerts such as those reported by the European 
Union’s rapid alert system for food and feed (RASFF), the FDA of the United States of America, or other 
competent authorities, in both English and other languages. The data is automatically updated every 24 
hours. If necessary, Azure is used to translate the reports to English. A BERT-based model classifies signals 
into categories like food, feed or food contact materials, while a sentence encoder generates embeddings 
to match products and hazards against preset dictionaries.
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A key example of this system’s effectiveness is the identification of Listeria contamination in Enoki mushrooms. 
The Signals team observed a growing number of global alerts for Listeria in these mushrooms, prompting 
closer scrutiny despite no reported listeriosis outbreaks in the United Kingdom of Great Britain and Northern 
Ireland. Given the serious health risks associated with consuming contaminated raw products, the Imported 
Foods Sampling Programme conducted targeted testing through port health and local authorities, ultimately 
detecting high levels of Listeria. As a result, additional preventative measures are being implemented to 
mitigate future risks.

 use case. data sampling
Large language models (LLMs) have advanced rapidly in recent years, largely driven by commercial technology 
companies such as OpenAI and Google. These models have the potential to enhance the data available to 
the FSA, supporting more informed, data-driven decisions and policies. However, they also present risks, 
including challenges in verifying the accuracy of outputs and vulnerabilities to prompt injection attacks. To 
address these concerns, any project or service incorporating generative AI is assessed against a set of eight 
guiding principles. These principles have been adapted from the UK Government’s Generative AI Framework 
to ensure responsible and secure implementation. Firstly, there is a need for low risk and low exposure, 
ensuring that AI applications are safe and do not pose significant threats. The lifecycle of generative AI 
must be carefully managed, with continuous evaluation and regular monitoring to adapt to evolving risks 
and needs. It is also essential to use the right tools for each specific task to ensure effectiveness. Security 
is a top priority. The application of generative AI must comply with legal and ethical standards, aligning 
with FSA policies. Transparency is crucial, and the processes must be open to scrutiny. Finally, a “human 
in the loop” approach ensures that expert oversight is maintained, with humans playing a critical role in 
decision-making and monitoring.

FSA receives 40 000 analytical test results in the form of reports every year. Extracting key information 
from free-text sampling data poses significant challenges, particularly in accurately interpreting contextual 
nuances. For example, distinguishing between “No milk protein was detected” and “Milk protein was detected,” 
which have opposite meanings. Previously, this process was manual, limiting speed and accuracy. The goal 
was to enhance data shareability, improve linkage across datasets, and extract intelligence more efficiently.

To address this, an LLM-based solution was implemented using OpenAI’s GPT via an existing Azure 
subscription to ensure adherence to FSA’s security requirements. The approach incorporated contextual 
information to structure the extracted data, transforming it into a tabular format that could be easily 
accessed and visualized in dashboards.

 use case. International Disease Monitoring+ Model
The International Disease Monitoring+ Model is a risk categorization tool to provide risk scores for animal 
origin products from specified countries due to microbial risk that FSA uses to inform border check rates 
through scientific methodology. Although the model itself does not use AI techniques, the methods used 
in the use cases above provide clean and up-to-date data that can be inserted into the model. This allows 
model outputs to be produced seamlessly every six months. Since this eliminates the time-consuming task 
of manual data cleaning, it enables researchers to spend more time on data analysis.
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3.3. � Using machine learning to predict pathogen 
adaptation to food sources

The Istituto Zooprofilattico Sperimentale (IZS) aimed to use a machine learning approach to predict 
whether pathogens have adapted to specific food sources based on genomic data (i.e., accessory genes, 
core genome alleles, core genome variants and pan genome kmers). This approach would be particularly 
valuable for outbreak investigations, where tracing a pathogen back to its food source can be extremely 
challenging. If the genotype of a pathogen found in an infected individual could reliably indicate its food 
source, it would significantly enhance the response to foodborne disease outbreaks. To explore this, the 
IZS trained supervised machine learning models (boosted logistic regression, extremely randomized trees, 
random forest (RF), stochastic gradient boosting (SGB), support vector machine (SVM) and extreme gradient 
boosting (XGBoost)) to classify Listeria monocytogenes as originating from dairy, fruit, leafy greens, meat, 
poultry, seafood and vegetables. Initial results using balanced datasets of Listeria isolated in the United 
States of America were promising (Castelli et al., 2023). However, when using unbalanced datasets of samples 
isolated in Italy from other sources, accuracy declined sharply. This drop in performance may have been due 
to imbalanced elements, such as variations in case distribution across food labels and geographic regions, 
as well as potential mislabeling of food sources—an issue that cannot be verified retroactively.

To address these challenges, the team implemented a simplified version of the workflow (i.e. using input 
core genome alleles with an extreme gradient boosting model) and streamlined the classification problem 
by reducing the number of food categories from six to two: meat and non-meat. This adjustment improved 
the model’s accuracy to 85 percent. The resulting expert system was integrated into the IZS’s bioinformatics 
platform, the Italian National Reference Centre for WGS of microbial pathogens (GENPAT), enabling the National 
Reference Laboratory to rapidly assess whether a given pathogen is associated with meat or another food 
type. Additionally, the importance of publicly available datasets has been emphasized in this case study for 
developing machine learning models, especially when local data is limited. In such cases, external datasets can 
be used for training, while local data can serve as an independent test set to validate the model’s performance. 
Furthermore, IZS advocates for the development and improvement of versatile analytical workflows in supervised 
machine learning, enabling users to build models by selecting methods of their choice for key steps such as 
data balancing, feature selection, cross-validation-based modelling, and performance evaluation.

3.4.  Import sampling prioritization with machine learning
The Food and Drug Administration (FDA) of the United States of America protects public health by ensuring 
the safety of the nation’s food supply, cosmetics and radiation-emitting products. It also oversees the safety, 
effectiveness and security of human and veterinary drugs, biological products, and medical devices.

 use case. Import sampling prioritization with machine learning
Every year, millions of food shipments come into the United States of America. On a typical day, there are a 
few inspectors in a port of entry that have to choose the right five to seven containers to examine physically 
and / or sample. The FDA aims to use machine learning to complement risk-based targeting of food products 
and supply chains likely to violate regulations for microbiological or chemical hazards in order to get the 
maximum efficiency out of their resources. FDA has opted to focus on classical machine learning instead 
of deep learning to be able to better explain their application of the regulations in a transparent manner. 

The objective of the machine learning models developed by the FDA is to predict the probability that a sample 
will violate regulations. For samples, that means the presence of a hazard being found in the product, and for 
inspections, that means a serious violation that requires official regulatory action. This prediction comes in 
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two forms: 1) the probability, ranging from 0 to 1, of being non-compliant; and 2) whether that probability is 
above a threshold that optimizes sensitivity (i.e. finding all violations) and specificity (i.e. not targeting those 
that are in compliance). This threshold can either be chosen by the model based on the training dataset or 
set manually by FDA staff. It varies depending on the hazard and resource capacity when deployed.

The FDA assesses model performance by determining model’s ability to accurately predict violations. In addition 
to this, overall accuracy is assessed, which looks at how often the model’s predictions are correct. Statistical 
significance is also analyzed using a confusion matrix and other statistical tests to ensure that the model’s 
performance is not due to chance. Feedback from FDA staff plays a crucial role in determining the practical 
value of the model, as it helps assess whether the predictions are aiding in the complex targeting work of the 
FDA and supporting the execution of the annual work plan. Lastly, the public health impact is measured by the 
volume of violative food removed from commerce and the potential illness or harm that has been prevented. 

Using these principles, the FDA has developed and deployed several hazard-specific models. An example is the 
microbiology import model. Here, more than ten years of import data was combined with past oversight and 
compliance information and demographic data. A boosted-tree algorithm (LightGBM) was used due to its superior 
ability to encode variables and explainability. Further, SHAP values helped explain the magnitude (strength) and 
direction (positive or negative) of a feature’s predictive value. This model revealed that out of 600 000 active supply 
chains, only 12 percent were predicted to be violative, allowing the FDA to focus their resources. Demographic 
variables such as how long a firm has been in business were important predictors of violations.

All models that the FDA develops go through three stages of assessment. First the models are trained and 
tested on historic data, which has been randomly assigned to a train or test set using an 80/20 percent split. 
If the model performance is good enough, a retrospective analysis will be done, where the model is applied 
to all active foreign supply chains. This model is then set aside while natural sampling activities conducted 
by the FDA in the field continue as usual. Once sufficient data has been collected, the model’s performance 
is evaluated using a confusion matrix to assess its accuracy, identifying false positives and false negatives. 
A deeper analysis is conducted to determine statistical significance and whether the model performs better 
than the baseline. If the model proves to be effective, the process advances to the next stage, prospective 
application. Here the model is deployed; and the model predictions are shared with the field staff. These 
predictions can help inform decisions at the point of entry, but there is always a human-in-the-loop; and 
the models are not dictating sample decisions. The models’ predictions are meant to advise and guide.

In practice, the models show about 70 – 92 percent accuracy when used retrospectively, and their percentages 
stay similar or even improve when used prospectively. In the fourth quarter of 2024, 184 samples violating 
regulations have been sampled primarily based on model recommendation. This represents 47 million kg 
of food, with a declared value of USD 9.1 million. Assuming a 500 g serving size and a 10 percent illness 
rate, 9.4 million people did not get harmed thanks to the FDA’s machine learning implementation.

The lessons that the FDA has learned from its machine learning deployment are that data quality is crucial 
for accurate predictions. Complete and consistent information, such as up-to-date registrations, product 
codes, and manufacturer details, improves model performance, while missing or inconsistent data serve as 
red flags. By narrowing the focus, machine learning models identify only about 17 percent of active supply 
chains (8 percent of total lines) as potentially violating regulations, allowing the FDA to concentrate on 
higher-risk shipments while facilitating trade for the rest.

Machine learning also bridges gaps in surveillance and compliance, revealing that 35 percent of flagged 
supply chains had never been sampled before. This dual benefit strengthens both oversight and enforcement. 
Additionally, applying machine learning at the supply chain level enables a shift from reactive to proactive 
intervention. Problematic shipments can then be removed before outbreaks or recalls occur, while insights 
at the industry or country level can guide training and outreach efforts to prevent violations altogether.
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3.5. � Proof-of-concept experimentation using language 
models for food safety

The whole agrifood system is connected globally; hence, food safety incidents reported around the world 
can be useful as early warning indicators of incoming food safety threats. However, the manual monitoring 
and analysis of the vast amounts of global food safety news across multiple online sources is labour-
intensive and hinders timely detection of potential risks to Singapore’s food supply chain. The Singapore 
Food Agency (SFA) is a statutory board under the Ministry of Sustainability and the Environment. SFA is 
the national food agency overseeing food safety and food security in Singapore.

 use case. Online food safety news monitoring
Together with the Nanyang Technological University (NTU), SFA co-developed a system that utilises language 
models to retrieve, categorise and analyse relevant news articles on food safety from online sources. The 
system automatically processes international news and food safety reports, extracting key information such 
as affected products, contaminant types, and source countries. It generates structured metadata, enabling 
systematic tracking of emerging food safety trends and potential threats.

The AI system has the potential to significantly enhance SFA’s food safety surveillance capabilities by 
enabling rapid detection of food safety incidents worldwide. Through automated trend analysis, it is able 
to support early identification of emerging risks and more targeted testing priorities, strengthening SFA’s 
ability to proactively protect Singapore’s food supply chain.

 use case. Pathogen information tracking
The constant evolution of foodborne pathogens demands effective surveillance through the comparison of 
local and global pathogen characteristics. This comprehensive monitoring is crucial for protecting public 
health and enabling swift response to emerging threats. However, the manual process of gathering, curating 
and analysing pathogen data from scientific literature and multiple databases is labour-intensive and limits 
timely detection of food safety risks.

The SFA and NTU collaborated once again to develop an automated system that scans the scientific literature, 
using Large Language Models (LLMs) to filter for relevant publications on foodborne pathogens. The system 
extracts and systematically curates pathogen data (e.g. Salmonella, Campylobacter and Escherichia coli) into 
a comprehensive database. This database enables efficient comparison between local and global pathogen 
characteristics, significantly reduces manual processing effort, and supports swift identification of emerging 
threats and more targeted food safety risk assessments.

The system significantly reduces manual processing efforts while enabling rapid identification of contamination 
sources through enhanced data analysis. By facilitating comprehensive comparison of pathogen characteristics, 
it allows for swift identification of emerging threats and persistent issues, strengthening SFA’s ability to 
protect Singapore’s food safety.
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3.6. � Building human-centric artificial intelligence 
systems for emerging food safety risk identification

The early-stage integration of Artificial Intelligence (AI) into food safety systems is becoming more common. 
At the Food Safety Authority of Ireland (FSAI), AI is being strategically applied to assist some areas to 
anticipate and manage emerging risks more effectively. One of the FSAI’s flagship initiatives in this space is 
the Emerging Risk Identification and Screening System (ERISS), which harnesses AI technologies to enhance 
the Authority’s ability to identify and detect potential threats to food safety and security at an early stage.

 use case. Emerging risk identification and screening system
Emerging risks, as defined by the European Food Safety Authority (EFSA), encompass newly identified 
hazards or significant changes in exposure or susceptibility to known hazards. These can arise from diverse 
sources such as climate change, supply chain shifts, novel food technologies, or geopolitical disruptions. 
The FSAI’s ERISS monitors such developments across a time horizon ranging from six months to twenty 
years. Through advanced data analytics and AI-supported screening, the system triangulates intelligence 
from a range of scientific publications, digital media, regulatory developments, and global trade patterns 
to identify weak signals that may indicate future food safety risks. This approach is in line with Ireland’s 
“National Artificial Intelligence Strategy: AI Here for Good”.

To operationalize this approach, the FSAI employs a suite of AI-driven tools. These include literature mining 
algorithms for scientific databases, automated digital media monitoring systems, and custom alert systems for 
tracking driver trends. The goal is to create a rich and almost real-time view of the emerging risks landscape. 
These tools not only allow faster and broader scanning and screening of relevant information but also help 
synthesize and summarize complex datasets into actionable insights. Importantly, AI supports, but does not 
replace, human expertise within the authority. The ERISS system is structured to be human-centric, with domain 
specialists validating any AI outputs and engaging in multidisciplinary review processes to interpret findings.

Beyond horizon scanning, the FSAI also explored the use of Computer Vision and NLP in regulatory contexts. 
For example, the FSAI has conducted pilot projects using Convolutional Neural Networks (CNNs) to automate 
the recognition and classification of nutritional information on food labels. Parallel efforts have also tested 
text classification algorithms to assist with monitoring digital media for food safety threats, such as food 
fraud or consumer reports of adverse health effects.

In another proof-of-concept initiative, the FSAI has developed a bespoke large language model (LLM) using 
a retrieval-augmented generation (RAG) framework hosted on Microsoft Azure. This model is designed to 
ingest and reason over documents to assist with rapid information identification, retrieval, collation and 
summarizing. While promising, these efforts underscore the importance of careful model training, supervised 
learning, and continuous ongoing multi-expert validation of outputs to ensure the trustworthiness and 
interpretability of any AI-assisted results.

Despite the growing capabilities of AI systems, their use in food safety still requires rigorous expert oversight. 
Outputs must be carefully interpreted within the regulatory and scientific context. As such, the FSAI adopts 
a cautious, phased approach: these AI tools have been first developed and tested in a sandbox environment, 
allowing for experimentation and adjustment without affecting live operations or introducing risks. Only 
after thorough testing, expert review, and the establishment of appropriate safeguards are the systems 
considered for production-level deployment.

Overall, the FSAI’s approach to AI reflects the balance needed in regulatory innovation, leveraging the 
efficiency and reach of machine learning and automation, while maintaining the critical role of expert 
judgement, ethical design, and transparency. As AI tools mature, they offer the potential to improve food 
safety surveillance, regulatory compliance, and consumer protection. However, the responsible deployment 
of such tools, underpinned by robust governance and interdisciplinary collaboration, remains paramount.
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4. �A global regulatory 
snapshot of artificial 
intelligence frameworks

4.1.	 �Responsible use of artificial intelligence within the 
public sector

To harness the potentials and opportunities offered by AI within and beyond the field of food safety, it is 
important to be conscious about concomitant challenges and risks. A logical analysis of potential risks, 
before jumping into AI use, can help anticipate problems and advance mitigation actions (Tzachor et al., 
2022). Moreover, implementing the appropriate principles in digital ethics is essential for promoting the use 
of AI technology to the benefit of humanity and the environment. Given the innovative and complex nature 
of AI and the potential risks, a collective reflection is challenging but imperative (RenAIssance Foundation, 
2020). In particular, when it comes to the AI use within the government agencies, this is not only a benefit 
but also an essential step to follow through (Alhosani and Alhashmi, 2024).

The use of AI in global agrifood systems may entail various types of risks, including data-related limitations 
in data acquisition, access, quality and trust. Even more because good data-driven evidence generation 
relies on vast amounts of high-quality data. The data on which AI systems are trained can significantly and 
unexpectedly change over time, affecting system functionality and trustworthiness (NIST, 2023). To train AI 
models, currently available data are often partial, biased, difficult to access, or of poor quality. Additionally, 
AI use in data generation raises ethical concerns such as data privacy and ownership, further constraining 
data accessibility and reusability.

The AI ethics discussion primarily involves the protection of the rights and the freedom of individuals against 
any sort of algorithm discrimination. This is possible when AI systems are designed and implemented to 
serve and protect human beings, which is reflected in the need for governments and all AI stakeholders to 
commit to developing and respecting frameworks and principles that structure and regulate AI. In this way, 
as transparency, traceability and responsibility grow, the risk of it impacting human rights will likely lessen 
(RenAIssance Foundation, 2020).

Awareness of the risks that can be associated with improper AI use is essential to put in place mitigation 
measures. Among the most efficient risk mitigation options are for the respective governments to develop AI 
ethics guidelines and data governance frameworks. These are essential to avoid the technological process 
that comes at the expense of ethical integrity, particularly when government use is involved. In this regard, 
several national, regional and global governance frameworks for responsible AI have emerged in recent 
years. The OECD observatory on AI governance offers a repository of national AI policies and strategies, 
gathering over 1 000 AI policy initiatives from 69 countries (OECD.AI, 2021). These initiatives reflect a global 
effort to ensure AI development is ethical, transparent, and beneficial to society.
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4.2. � Example of preliminary activities conducted by 
authorities (as of April 2024)

In Australia, the Office of the Information Commissioner published a guide to data analytics and privacy 
principles in 2018 and is developing a national ethics framework for AI standards and conduct (Australian 
Government, 2018; Australian Government, 2024). New South Wales has independently created guidance 
for regulators and government agencies on AI, emphasizing transparency, community benefit, fairness, 
privacy, and accountability (NSW AIAF, 2024).

Canada has adopted AI guiding principles requiring public institutions to incorporate ethical considerations 
like privacy and transparency. A Treasury Board directive outlines federal responsibilities for assessing and 
mitigating risks of automated decision systems, focusing on transparency and data-driven decision-making 
(Government of Canada, 2021). The Montreal Declaration, initiated by the University of Montreal, guides 
AI development with principles such as well-being, autonomy, privacy, solidarity, democratic participation, 
equity, diversity, caution, responsibility, and sustainable development (Université de Montreal, 2017).

China’s 2017 New Generation AI development plan aims to establish AI laws, regulations, and ethical 
norms (Webster et al., 2017). In 2019, the Chinese AI Industry Alliance released self-regulation guidelines 
promoting human-orientated, secure, and transparent AI (Laskai and Webster, 2019). The New Generation 
AI Governance Expert Committee outlined eight non-binding principles for AI development, and in 2023, 
measures were drafted to ensure ethical application of generative AI, addressing issues like discrimination, 
intellectual property, and personal information use (Seaton et al., 2023).

The European Union’s guidelines on AI ethics advocate for lawful, ethical, and robust AI, emphasizing a 
human-centric approach aligned with European values (High-Level Expert Group on AI, 2019). Partly entered 
into force in 2024, the AI Act is the first-ever comprehensive legal framework on AI worldwide, setting out 
clear risk-based rules for trustworthy AI in Europe (European Parliament and the Council of the European 
Union, 2024).

India introduced its inclusive AI strategy, #AIFORALL, in 2018, followed by the 2021 Principles for Responsible 
AI, which focus on safety, inclusivity, equality, privacy, transparency, accountability, and positive human values 
(NITI Aayog, 2018, 2021). The Digital Personal Data Protection Act of 2023 aims to create a comprehensive 
legal framework for the digital economy, addressing cybercrime, data protection, online safety, and intermediary 
regulation (Ministry of Law and Justice, 2023).

Japan’s 2017 AI R&D guidelines emphasize ethics, human dignity, and autonomy, while the 2019 Social 
Principles of Human-Centered AI further outline ethical considerations in AI development (The Conference 
toward AI Network Society, 2017; Council for Social Principles of Human-centric AI, 2019).

Latin American countries are actively developing AI regulations to promote ethical AI development, protect 
human rights, and foster innovation. National initiatives in Argentina, Brazil, Colombia, Mexico, Chile, and 
Peru focus on AI regulation bills and data protection laws, targeting academia, industry, and civil society 
(CPDP Conferences, 2022).

In New Zealand, the AI Forum NZ’s Trustworthy AI in Aotearoa AI Principles provide high-level guidance for 
AI stakeholders to ensure access to trustworthy AI (AI Forum New Zealand, 2020). These principles offer 
a foundation for organizations to develop their own AI ethical principles, focusing on fairness and justice, 
reliability, security and privacy, transparency, human oversight and accountability, and well-being.
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The Republic of Korea’s AI Ethical Standards, announced in 2020, are a key part of the National Strategy for 
AI. These standards emphasize respect for human dignity, the common good of society, and the proper use 
of technology. They include ten core requirements to promote ‘humanity’ in AI: safeguarding human rights, 
protecting privacy, respecting diversity, preventing harm, promoting the public good, fostering solidarity, 
managing data responsibly, ensuring accountability, maintaining safety, and ensuring transparency (MSIT 
and KISDI, 2020).

Rwanda’s National AI policy, developed in 2022, aims to position the country in AI, enhance skills and AI 
literacy, create an open ecosystem, transform the public sector, and promote responsible adoption in the 
private sector (MINICT, 2022). The policy includes 14 recommendations, such as reskilling, education, 
international collaboration, accessibility, public AI service delivery, and responsible AI principles.

In Singapore, the AI Verify Foundation (AIVF) and Infocomm Media Development Authority (IMDA) developed 
a draft Model AI Governance Framework for Generative AI with nine dimensions to be looked at in totality 
for a trusted AI ecosystem (AIVF and IMDA, 2024). This framework builds on the existing Model Governance 
Framework that covers traditional AI, last updated in 2020 (IMDA and PDPC, 2020).

In the United Arab Emirates, the four Dubai principles of ethics, security, humanity, and inclusiveness for 
AI were established as part of a collaborative living document to create a common foundation for industry, 
academia, and individuals in navigating AI development. Each principle includes sub-principles to clearly 
define goals for AI design and behaviour (Smart Dubai, 2018).

In the United Kingdom of Great Britain and Northern Ireland, the AI Security Institute (AISI), part of the 
Department of Science, Innovation and Technology, operates as a governmental startup combining 
government authority with private sector expertise. Its initiatives focus on testing advanced AI systems, 
informing policymakers about risks, fostering collaboration across sectors to mitigate risks, and advancing 
publicly beneficial research. Ongoing evaluations address AI misuse, societal impacts, autonomy, and 
safeguards (AISI, 2024).

In the United States of America, the United States Artificial Intelligence Safety Institute (US AISI) was 
established to advance and disseminate AI safety practices, and support institutions and communities 
in AI safety coordination, in collaboration with diverse AI industry and civil society members, as well as 
international partners (US AISI, 2025). In California, the proposed bill SB-1047 aims to enact the Safe and 
Secure Innovation for Frontier Artificial Intelligence Models Act (Wiener et al., 2024). This bill would require 
developers to comply with various safety and security requirements before training AI models, with the goal 
of reinforcing existing laws to determine digital content provenance and reduce the impact of deepfakes. 
Meanwhile, the 2022 blueprint for an AI Bill of Rights aims to foster innovation and trust in AI by promoting 
responsible stewardship of trustworthy AI while ensuring respect for human rights and democratic values. 
It complements existing OECD standards and sets a flexible standard for the evolving AI field (OSTP, 2022).

4.3.  Global efforts and good practices
On top of national and regional frameworks, international efforts have also been made. The Rome Call for AI 
Ethics was signed in 2020 to promote a sense of shared responsibility among international organizations, 
governments, institutions and the private sector in an effort to create a future in which digital innovation and 
technological progress grant mankind its centrality (RenAIssance Foundation, 2020). The Global Partnership 
on Artificial Intelligence (GPAI) is an international initiative that involves multiple stakeholders and aims to 
steer the responsible development and utilization of AI, with 29 international members (GPAI, 2024).
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In 2024, the GPAI announced an integrated partnership with the OECD to advance an ambitious agenda for 
implementing human-centric, safe, secure and trustworthy AI (OECD, 2024). The United Nations System has 
also acted in this space. The UN Systems Chief Executive Board of Coordination (CEB) has developed ten 
Principles for the Ethical Use of AI in the United Nations System to provide a basis for UN system organizations 
to make decisions on how to develop, design, deploy and use AI systems (CEB, 2022). Additionally, the 
General Conference of the United Nations Educational, Scientific and Cultural Organization (UNESCO) 
has independently issued a Recommendation on the Ethics of Artificial Intelligence in 2021, followed by a 
Readiness Assessment Methodology in 2023 for AI to be utilized, developed, and applied ethically for the 
benefit of humanity and our planet (UNESCO, 2021, 2023).

Overall, findable, accessible, interoperable and reusable (FAIR) data frameworks and improved standards 
for transparency, ownership rights and oversight, across all phases of data generation, acquisition, storage 
and analysis are a necessity for responsible AI (Tzachor et al., 2022). Additionally, privacy and cybersecurity 
risks also deserve consideration to address AI trustworthiness characteristics. Therefore, when and if 
governments consider use of AI for their work, developing standards and guidelines, or leveraging available 
ones, it is a critical prerequisite to reduce security and privacy risks and promote ethical AI implementation 
(NIST, 2023). Since recurrent principles such as transparency, security, FAIR data, accountability and 
inclusivity are overarching across AI, food safety competent authorities may largely benefit from closely 
liaising with their government agencies in other sectors for the guidelines to be the result of a multisectoral 
collaboration, and even beyond national borders, in cooperation with relevant international organizations.

4.4. � International and multisectoral collaboration and 
partnership

International and multisectoral collaborations are found to be key in developing and successfully deploying 
AI tools for food safety (Qian et al., 2023). This includes collaborations between universities, companies, 
food safety competent authorities, and international organizations. Collaboration fundamentally means 
sharing initial investments and technical capacities, as well as fostering an AI-friendly culture. For long-term 
sustainability, it will become important to include AI development and AI usage in educational curricula 
(Chen et al., 2020b). Furthermore, the UN strongly emphasizes the need for international cooperation and 
inclusive, multi-stakeholder partnerships, including with governments, the private sector, civil society, and 
academia, to ensure that AI systems are safe, secure, trustworthy, and equitably beneficial, particularly for 
developing countries and in support of the Sustainable Development Goals (UN General Assembly, 2024).

Collaboration is also essential in ensuring all relevant opinions are considered but also that all relevant 
datasets are included, thus alleviating the risk of bias in the data (Qian et al., 2023). This can be done using 
open-source sharing, but, realistically, this is not always possible. Especially in the case of sensitive data, 
such as food safety data, sharing of data might not always be feasible (Magdovitz et al., 2021). Fortunately, 
methodologies exist for AI systems to optimize without data being disclosed. One of the most promising 
techniques for this is federated learning (Konečný, McMahan, and Ramage, 2015). Unlike traditional approaches 
that require data to be centralized for model training, federated learning enables the algorithm to travel 
to local data sources, or “data stations”, and learn from the data without transferring it. This approach is 
metaphorically similar to a train stopping at various stations to collect insights without removing the cargo. 
Federated learning is gaining traction in food safety research, where privacy, data ownership, and regulatory 
sensitivity are paramount (Fendor et al., 2024).
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5. �Considerations for the use 
of artificial intelligence in 
food safety management

5.1.  Identify the problem first

When considering the use of AI for food safety in the context of governmental work, it is important to set 
out a clear objective to state what problem is to be resolved by developing an AI tool (Domingos, 2012). 
Qian et al., (2023) stated that in the context of food safety, it is crucial to recognize that AI is not a universal 
solution, but that the focus should be on applications where AI effectively addresses specific needs and 
questions. To illustrate the importance of identifying the problem first, Figure 5 shows what the generic 
flow of the planning process could look like.

Even though it can be useful to develop algorithms without a specific objective for coding training purposes, 
it may sometimes be possible that certain algorithms/devices or machine learning techniques are developed 
before identifying a problem to solve. However, considering the substantial requirements of AI applications 
to be developed and used within the public systems using the public resources, the sustainability of such AI 
tools is questionable without a clear and valuable outcome, which is to solve an existing problem (Zatsu et al., 
2024). Indeed, some studies have recognized that using AI without a clear goal can lead to a waste of time 
and resources (Rouger, 2019; Cappaert and Muilwijk, 2023). Even though AI has been creating momentum 
with a lot of creative and ad hoc ideas, the use of AI in food safety management is only valuable if it offers 
clear net benefits, such as solutions to specific problems.
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Figure 5  Generic flow of the artificial intelligence tool development for food safety  
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5.2.  Value of the artificial intelligence tools
For the AI tool to be perceived as valuable to the end user, its user-friendliness is most likely essential (Evans 
et al., 2022). For example, generative pre-trained transformers (GPT) have been around since 2018 (Radford 
et al., 2018), but have been embraced by a critical mass since the launch of ChatGPT in 2022, which has an 
intuitive and user-friendly interface. In addition to usability, a successful AI tool typically is also compatible 
with existing tools and data (Campos Zabala, 2023). Examples include Copilot from Microsoft, Gemini for 
Google, and Siri for Apple. The measurable value of AI tools can typically be in automating a process and 
thus saving time or in achieving something with the tool that could not be achieved before. For example, 
conventional cancer screening can be improved by developing automated AI tools (Verburg et al., 2022) 
utilizing CNNs for the accurate and rapid identification of breast cancer on magnetic resonance images. 
An example is the 2024 Nobel Prize-winning AI method AlphaFold (Jumper et al., 2021). AlphaFold is an 
AI tool that precisely predicts the 3D structure of proteins and even designs entirely new proteins, thereby 
enabling experiments and scientific breakthroughs that were previously unimaginable (Callaway, 2024). 
Cancer screening and AlphaFold are typical examples of what the value of AI can be in task automatization 
and achieving novel results, albeit in specialized context.

5.3.  Value of the artificial intelligence outputs
It is important to consider the value of the outputs that AI tools generate / produce. The reliability of AI 
output is important, and by developing AI tools in compliance with data protection standards and minimizing 
potential bias, one can govern reliable AI systems (Diaz-Rodrigues et al., 2023).

In machine learning, accuracy is typically assessed in an independent testing dataset to prevent overfitting 
(Goodfellow, Bengio and Courville, 2016). Overfitting can be explained as a machine learning model 
performing well on the data it is trained on (seen data), but it performs poorly on new or unseen data. A 
proper separation of randomized data used for training the model and a holdout dataset for testing the 
model (e.g. 70 percent training set and 30 percent testing set) is good practice to manage overfitting and 
to ensure reliable, reproducible and robust models are developed. It is important to keep the holdout testing 
dataset separate until the very end to prevent unintentional optimization on the testing dataset (Goodfellow, 
Bengio and Courville, 2016).

Although a random split such as 70/30 percent is often used, in the case of data encompassing multiple 
years, a temporal split, using earlier years for training and more recent years for testing, closely resembles 
prospective validation. Of course, prospective validation of an AI model provides even higher evidence (van 
Calster et al., 2023). Continuous monitoring of prospective performance furthermore embeds trust in these 
systems. This can be done (semi-)automatically or with a human-in-the-loop (Wu et al., 2022).

Furthermore, it is important to note that the data used to train AI models generally have in-built bias based on 
where the data were collected and thus the outputs of the AI models would likely have some local adequacy. 
This means that the outputs of the model are fit for the specific context of the data that they were trained 
on (Ayling and Chapman, 2022). For example, an AI model can be designed to yield reliable and accurate 
outputs for a high-income country, but that does not necessarily mean that these outputs would also be 
adequate for a low- and middle-income context, and vice versa.
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5.4.  Explainable artificial intelligence
Some simple AI models, like linear regression or least absolute shrinkage and selection operator (LASSO), 
can easily explain the relationship between input and output, and these are called model-based explanations 
(van der Velden et al., 2022). However, deep learning is often seen as a “black box”, since neural networks are 
made up of many layers with complex connections, making it very hard to fully understand how the outputs 
are produced, even if each layer is specifically examined. Therefore, there are growing concerns that these 
black box models may have hidden biases, which can go unnoticed (van der Velden et al., 2022). If such 
models directly influence food safety decisions or policies, the eventual impact can become substantial. To 
address this, experts support methods to make these systems more understandable (Adadi and Berrada, 
2018; Murdoch et al., 2019). Instead, explainable AI (XAI) methods can be used to explain them. One such 
method is SHapley Additive exPlanations (SHAP), which explains how much each feature contributes to 
the model’s output using Shapley values (Shapley, 1953; Lundberg and Lee, 2017).

XAI is a relatively young field, kickstarted by Defense Advanced Research Projects Agency (DARPA) XAI 
program of the United States of America in May 2017 (Gunning and Aha, 2019). It has achieved tremendous 
uptake among multiple fields (Adadi and Berrada, 2019; Murdoch et al., 2019; van der Velden et al., 2022), 
yet it is still not mature enough to, for example, serve as an interrogable tool in a lawsuit (Rudin, 2019). 
These aspects also require a proper legal framework. Many jurisdictions have developed such frameworks, 
with one example being the European Union’s AI ACT (European Commission Directorate-General for 
Communication, 2024).

5.5.  Possible pitfalls, challenges and risk management

5.5.1.	  Artificial intelligence governance challenges
Due to growing concerns about the “black box” of AI, governance of AI has become key, and various legislative 
initiatives have started in different parts of the world. Such legislation establishes frameworks and policies 
to guide the ethical and responsible development and use of AI (Gyevnar, Ferguson, and Schafer, 2023). It 
addresses data quality, privacy, security, transparency, and accountability (both at the data and algorithm 
level), preventing misuse, and ensuring public trust. A typical example is removing, or correcting for, bias 
from AI systems (Rudin, Wang and Coker, 2020). 

One way to promote and facilitate responsible AI is to use XAI, as explained in the previous section (Adadi 
and Berrada, 2018). This is crucial in dealing with high-stakes issues, since relevant regulations may be 
able to provide individuals the rights to receive meaningful information about how a decision was rendered. 
XAI is abundantly used in the field of medicine (van der Velden, 2022) and will likely become more and 
more important to yield explanations in food safety. An example of the use of XAI in food safety is Hao  
et al., (2024), who used graph representation learning to model and interpret complex relationships between 
environmental factors, enabling more accurate and transparent predictions of heavy metal concentrations 
in soil-rice systems.

Additionally, given the growing environmental impact of AI technologies, it is crucial to align their development 
with sustainability principles; approaches such as green AI aim to reduce computational costs and energy 
consumption, making AI both more accessible and environmentally responsible (Bolón-Canedo et al., 2024).
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5.5.2.  Biased data and hallucinations of artificial intelligence
Since AI learns from data, biased data can lead to biased AI outcomes, perpetuating or amplifying existing 
prejudices. For example, there is concern about unfairness in recidivism prediction in the United States 
of America (Rudin, Wang and Coker, 2020). Trust in AI systems can be elevated by the aforementioned 
examples of AI governance, responsible AI, and explainable AI. At the same time, it can also be harmed by, 
for example, hallucinations of AI or by malefactors. Hallucinations in AI refer to instances where artificial 
intelligence models, especially language models, generate incorrect, fabricated, or misleading information 
that may seem plausible but is actually not based on any real data or facts (Waldo and Boussard, 2024). 
For instance, hallucinations of AI might be details or events that never happened, confident-sounding 
answers that are entirely false or nonsensical, or responses that appear coherent but lack factual accuracy. 
It is pivotal for AI developers to address these potential threats and for AI users to develop a certain level 
of “AI-literacy” (Ng et al., 2021). In a widely discussed incident, the New York Times reported on a lawyer 
who used ChatGPT to generate case citations, only to later discover that they were entirely fabricated, or 
‘hallucinated’ (Waldo and Boussard, 2024). The potential risk of these hallucinations is highlighted by this 
incident, since they are often subtle and can go undetected. Human-in-the-loop, checking sources and 
acquiring the aforementioned AI literacy are therefore critical steps to mitigate the risks.

5.5.3.  Risk management of wrongdoing
Techniques that can be used by malefactors include adversarial attacks (Kurakin, Goodfellow, and Bengio, 
2018). This means that the input data is altered slightly to trick the AI into misclassifying it. These 
modifications are often so minimal that they are imperceptible to human observers. However, the AI will 
still make a mistake based on this very subtle modification. Another related threat is data poisoning, where 
manipulated or misleading data is introduced during the training phase to corrupt the model’s behaviour. 
While there are several technical solutions to making AI robust against such wrongdoing (Tramèr et al., 
2017), a crucial step towards preventing such wrongdoing is to know your data and to always consider 
domain-specific sanity checks.

5.5.4.  Premature use of artificial intelligence
The risk of prematurely using AI in food safety, whether by applying techniques that are not yet suitable for 
the specific data or problem or by implementing AI without the necessary expertise to interpret its output, 
lies in potentially undermining the trust and credibility of the organization employing it (Santoni de Sio and 
Mecacci, 2021; Smith, 2018). Maintaining consumer trust in food safety authorities is crucial, as it strongly 
influences both food safety practices and purchasing decisions (Chen, 2008). As with all advanced tools, 
the ability to determine appropriateness can be a continuous matter of debate. Guardrails for proper AI 
use are continuously constructed; nevertheless, it is wise to consult with AI experts before applying such 
techniques (Lekadir et al., 2025). Mitigation strategies could include extensive validation of AI in different 
contexts, thorough risk assessment (legal, ethical and social), user testing, and appropriate and extensive 
documentation.
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5.6.  Data governance and data gaps
Data governance involves defining who has authority and control over data and how that authority is exercised 
through decision-making on data-related issues (Janssen et al., 2020). One of the best-known examples of 
good data governance is FAIR (Wilkinson et al., 2016), which aims to ensure that data are findable, accessible, 
interoperable, and reusable (FAIR). Findable data includes metadata, which is descriptive information about 
the given data. The availability and the accessibility of data and metadata for both humans and machines 
are key. This can include authentication or authorization, especially if the data is sensitive, which can be 
the case for food safety data. FAIR does not mean that the data has to be openly available (Wilkinson et al., 
2016). Storing data in standardized formats helps accomplish interoperability. Interoperable means that 
both humans and machines are able to use the data.

Reusability of data by others can be achieved by providing good documentation and selecting a proper 
sharing license for your data (Wilkinson et al., 2016). At many research centres, such as universities, data 
management plans are mandatory (WUR, 2025). This facilitates collection and storage of data in a FAIR 
manner. Once data are FAIR, they can be stored online in publicly available repositories such as Zenodo 
(European Organization for Nuclear Research and OpenAIRE, 2013) and Harvard Dataverse (King, 2007) 
or in data spaces such as the European Union’s Common European Data Spaces (European Commission 
Directorate-General for Communication, 2025). Many funders and publishers encourage researchers to publicly 
share their research data whenever possible after publishing their research papers (Wendelborn, Anger, 
and Schickhardt, 2024). Data sharing is a part of the Open Science philosophy, which aims for transparent 
and accessible knowledge that is shared and developed through collaborative networks (Vicente-Saez 
and Martinez-Fuentes, 2018). Ensuring that data is FAIR (and shared whenever possible) will significantly 
advance AI-driven research in food safety. By making data widely available, researchers, including those who 
lack the resources to collect their own datasets, can still conduct meaningful studies, thereby contributing 
to the collective progress of the field.

5.7.  Public algorithm sharing mechanisms
In recent years, the practice of sharing algorithms has become increasingly prevalent. This shift is in 
part driven by the desire for greater collaboration and transparency within the research and development 
communities. Open-source platforms such as GitHub (GitHub, 2025) or GitLab (GitLab, 2025) have become 
central hubs where developers and researchers across the globe can share, modify, and build upon each 
other’s code. By making algorithms publicly available, these platforms enable others to replicate studies, 
verify results, and contribute to improvements. Other platforms like Docker Hub (Docker, 2025) and Anaconda 
Hub (Anaconda, 2025) are dedicated to hosting transportable images of algorithms that can be transferred 
between operational systems to contribute to the exchange and reproducibility of algorithms.

Additionally, AI community platforms like Hugging Face (Hugging Face, 2025) have emerged as popular 
spaces where researchers, developers, and companies can share pre-trained models, datasets, and tools. 
Hugging Face offers an extensive library of state-of-the-art AI models, including NLP models that can be 
fine-tuned and adapted for various applications, from sentiment analysis to text generation. These platforms 
foster a collaborative environment, enabling individuals and organizations to accelerate the development 
of AI models and reduce the duplication of efforts. It is important to check that models are developed or 
governed by trusted sources.

Tech companies have also contributed significantly to the open-source movement, particularly in the 
realm of deep learning. Meta AI, for example, developed the PyTorch framework, which has become one 
of the most widely used tools in deep learning (Patel, 2017). PyTorch has rapidly gained popularity due to 
its flexibility, ease of use, and strong support for research-oriented tasks. Regarding Python libraries, it is 
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important to note that PyTorch is designed for deep learning (Paszke et al., 2019), whereas scikit-learn is 
primarily used for machine learning (Pedregosa et al., 2011). By making PyTorch open-source, Meta AI has 
allowed researchers and developers to access and modify the framework, fostering innovation across a 
variety of industries, from healthcare to finance (Patel, 2017).

Alongside PyTorch, TensorFlow, developed by Google, is another widely used open-source framework that 
has played a major role in democratizing access to deep learning tools. In parallel with these code-based 
platforms, zero-code and no-code AI tools are also gaining traction, further democratizing access to AI 
technologies. Tools such as Google’s AutoML, Microsoft’s Lobe, IBM Watson Studio, and Teachable Machine 
allow users to build, train, and deploy AI models through visual interfaces without writing a single line of 
code. These platforms enable subject-matter experts, educators, and small business owners to apply AI 
to real-world problems without the need for advanced technical expertise. By lowering the barrier to entry, 
no-code tools contribute to broader participation in AI development and innovation. Such public sharing 
mechanisms are pivotal to the continued growth of the AI field, ensuring that advancements are not only 
built upon but also scrutinized, improving the overall quality and ethical standards of the technologies 
being developed.

5.8. � Artificial intelligence literacy and capacity 
development

AI literacy can be defined as the basic competencies to know and understand, use and apply, as well as 
evaluate and create AI (Ng et al., 2021). The development of AI literacy through training and education is 
a critical step to prepare for a future in which AI will likely play an increasingly large role in food safety 
management. The development of AI capacity is essential before integrating AI in food safety management. 
Without this foundation, individuals and organizations would risk implementing AI systems that are ineffective, 
unreliable, or unable to generate meaningful insights from complex food safety data, thereby compromising 
the potential benefits of AI (Díaz-Rodríguez et al., 2023). It is furthermore important for training and education 
to include responsible data management and use (Frugoli, Etgen, and Kuhar, 2010).

5.9.  Support for data-driven decision-making

5.9.1.  Required data for artificial intelligence development
When considering the development of AI applications to solve a defined problem, one of the first steps is 
to identify the relevant data that are already existing and readily accessible (Zatsu et al., 2024). Having a 
sufficient amount and appropriately high-quality data is an essential basis for AI applications, because such 
data is necessary to effectively train and validate AI models (Liang et al., 2022). In the area of food safety, 
the whole food supply chains from production through retail to consumers within the agrifood systems 
have, in theory, a great potential in generating large volumes of data that can feed into AI applications (Rugji 
et al., 2024). The outputs from such AI tools could be applied to various food safety-related assessment, 
prediction, categorization and prioritization methodologies so that they can be useful in proactive risk 
management actions and data-driven decision-making for the competent authorities (Strawn et al., 2013).

Data can be structured or unstructured and can be in the form of raw data such as numeric data, texts, 
images, audio and / or video, or can be obtained from secondary sources such as existing databases. 
However, if the relevant dataset does not exist in sufficient quantity or high quality, or if it is not readily 
accessible, then developing AI applications might not be appropriate, especially because the amount and 
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quality of required input data cannot be predicted beforehand to estimate the model performance (Zatsu  
et al., 2024). Once an adequate dataset has been identified or built, the next step is to assess the data quality 
and governing structure, including the ownership of the data as well as the legal and ethical considerations 
of the collected data (Rugji et al., 2024). The legitimacy of the data also needs to be evaluated together with 
the sensitivity assessment for responsible AI development (NIST, 2023).

Potentially sensitive information contained in the data may be securely removed or anonymized before 
use and can be verified for correctness and completeness. To streamline the data governance assessment 
processes, having a comprehensive AI policy as a prerequisite activity may be useful, and part of such a policy 
can be dedicated to ensuring the responsible use of data for AI applications actions (Tzachor et al., 2022).

With the presence of such a structure, it is important that ethical compliance is assessed through human 
supervision to guarantee proper use of data as well as adherence to relevant laws. Furthermore, transparency 
assurance is important, availing information to data providers on how their data are used and the resulting 
AI system’s outcome. Experts in data protection and other relevant legal matters can be designated to work 
with the AI development team to follow through on ethical responsibility.

Box 1. �Checklist for data requirements for responsible 
artificial intelligence

	 Does the required dataset exist?

	 Who owns the dataset?

	 Is the use of the dataset allowed by the owner in a sustainable manner?

	 Is the dataset accessible?

	 Is the dataset legally and ethically usable?

	 Is the source of the data credible, and is the dataset reliable?

	 Are there any sensitivity issues in the dataset / parameters? If yes, is it 
manageable?

	 Is the dataset sufficient in its amount?

	 Is the quality of the data sufficiently high?

	 Is the data structure appropriate for AI applications?

	 Can the use of data be transparent and sustainable?

	 Is there a need to pre-process / improve / optimize the dataset prior to 
AI development?
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5.9.2.  Quality of data
It can be considered that data quality is more important than its quantity in AI applications. Figure 6 illustrates 
general components of quality data standards. Accuracy of AI learning models is highly dependent on the 
quality of data. However, obtaining uniform and high quality food safety data is often a challenge due to the 
complexity and diversity of agrifood systems. Because of this, imbalanced, heterogenous, skewed or missing 
data may occur, and this can affect the performance of the AI algorithms (Qian et al., 2022). Additionally, 
diversity of food matrices leads to a variety of data types because various protocols and testing methods 
exist. For example, on-site contaminant detection emphasizes efficiency and portability, while laboratory-
based contaminant detection focuses on accuracy and precision. Sample sizes also affect the overall data 
quality. Also, as negative (safe) results are not usually reported publicly, there is a possibility that data may 
be already skewed with positive (unsafe) results that are reported and documented.

Another key factor in maintaining the quality of data is bias reduction. For example, when using data from 
social media to predict public opinion of a given novel food, it is not possible to capture all the behavioural 
and demographic factors by the gathered data (Deng, Cao and Horn, 2021). This introduces bias into the 
AI model, so data selection must be performed in a balanced manner or artificially rebalanced through 
computational methods. Concerted efforts can be made to ensure standardized approaches to the collection, 
analysis and sharing of data.

Preprocessing the data can contribute to data consistency, thus potentially improving and optimizing the 
data to train the AI models. For preprocessing, the data can be optimized to extract the essential parameters 
only. It is a common practice in AI applications to build models with many parameters at first, as this helps 
verify the ability of the model to capture underlying patterns and associations. However, in classical machine 
learning approaches such as logistic regression, it becomes important to limit the number of parameters to 
only those that are essential. This practice prevents overfitting and ensures that model performance does 
not deteriorate due to excessive complexity (Friedman, 1997).

Box 2. �Questions to validate if the data meets the data 
standards

	 Is the dataset of sufficient quality and quantity?

•	 Can the dataset be split into sufficiently large training and test 
sets?

	 Is the dataset fit for the problem? (examine descriptives)

	 Is metadata available?

	 Does the dataset meet ethical and legal standards?

•	 Does the dataset meet FAIR standards?

	 Does the dataset contain known biases?

	 Does the dataset pass a sensitivity check / does the output comply 
with sensitivity regulations?

?
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Box 3. �Options for improving / preprocessing data for 
artificial intelligence

	 Standardizing the data collection approaches

	 Increasing the sample sizes

	 Addition / removal of parameters

	 Bias reduction

	 Sensitivity management

Source: Authors’ own elaboration.

Figure 6  General components of data quality standards

DATA
QUALITY

COMPLETENESS

Is all the required 
data present?

UNIQUENESS

Are all features 
unique?

VALIDITY

Is the data  
valid?

ACCURACY

How well does the  
data reflect reality?

TIMELINESS

Is the data  
up to date?

CONSISTENCY

Is the data  
consistent?
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5.9.3. � Data gaps and preparedness for artif icial intelligence 
development

It is more than possible for many countries to have only a limited amount of food safety data sets that 
are currently available and digitalized, and it can create a significant obstacle in the development of AI 
applications (Qian et al., 2022). While it is not realistic to aim at effective AI development in this data-gap 
situation, working on some key prerequisite activities meanwhile can be useful, as they are in any case 
necessary for the steps forward.

Bridging the data gap would most likely involve allocating financial and human resources to establish 
effective data generation, collection and consolidation systems, therefore, it can be useful to start exploring 
collaborations and partnerships among the relevant government agencies, research institutions, universities 
and laboratories, as well as with some reputable organizations to find resource-effective strategies, as 
mentioned in the AI policies in the regulatory snapshot chapter. Developing a strategy to nurture a data-
sharing culture between public and private sectors is also one of the forward-looking activities for future AI 
development. Development of the national AI policy to be applied in the food safety sector is also considered 
to be a good practice for responsible AI, and referring to the examples introduced in the regulatory snapshot 
chapter can be a good starting point.

Box 4. �Example prerequisite activities for artificial 
intelligence development in case of data gap

	 Explore collaborations and partnerships to establish effective data 
collection systems

	 Strategize to develop a data-sharing culture between public and private 
sectors

	 Develop an AI policy document, including an ethical and responsible AI 
strategy

	 Capacity development training for food safety competent authorities on 
privacy data protection, awareness and data literacy

	 Technical training on AI applications currently used for food safety in 
the public sector

	 Development of combined expertise in food safety, data analytics and AI
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6. �Tips for food safety 
competent authorities

Food safety competent authorities who wish to benefit from AI applications to improve the effectiveness 
and efficiency of their work may like to consider following tips provided by some early adopters.

6.1.  Consider some key activities to be completed first
Before implementing AI, it would be valuable and almost essential for food safety competent authorities to 
assess the AI governance framework within the country context. Various AI institutes, as well as national 
and regional bodies, emphasize the importance of ethical and responsible AI use. Many of these guidelines 
highlight key principles, including transparency, inclusivity, accountability, impartiality (lack of bias), reliability, 
and respect for user and data privacy (RenAIssance Foundation, 2020; GPAI, n.d.; OECD, 2024; CEB, 2022; 
UNESCO, 2021, 2023). Transparency is a very common central theme among multiple guidelines, as AI 
systems and their output production processes are often invisible; thus, clear explanations are necessary in 
a way that is accessible to relevant stakeholders. Ensuring that AI systems and the data they rely on comply 
with legal and regulatory requirements, including intellectual property laws, is also a critical consideration.

Example actions
•	 Review the AI governance framework within the country to fully understand ethical and responsible 

AI use. If there is no policy, consider developing one.

•	 Hold a stakeholder meeting to discuss the governance issues with various sector experts to understand 
what needs to be done from the government side prior to developing AI applications.

•	 Consult international knowledge resources to understand the trend in AI applications to understand 
how transparency can be maintained.
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6.2. � Assess the current capacity for artificial intelligence 
development

Adequate AI capacity for the development and application of AI tools has been described as a critical step 
in order to ensure responsible AI usage (Ng et al., 2021). Therefore, evaluating whether such capacity is 
in place before deploying AI is important. If there is a limitation, enhancing education and literacy in data 
science, computer science, and design thinking will enable food safety professionals to communicate more 
effectively across disciplines and articulate specific needs (Qian et al., 2023).

Furthermore, several organizations have emphasized the importance of ensuring that the AI tools can be 
sustained after their initial development (US AISI, 2025; Université de Montreal, 2017). For example, the 
American Artificial Intelligence Safety Institute (AISI) states sustainable development as one of their five 
value-based principles (US AISI, 2025). Likewise, sustainable AI development is one of the seven principles 
of the Montreal Declaration for Responsible AI (Université de Montreal, 2017). Including AI development 
and usage in educational curricula could be considered as an important tool to promote the long-term 
sustainability of AI (Chen et al., 2020b).

Example actions
•	 Consider holding an expert consultation meeting to discuss the national capacity in AI and relevant 

fields.

•	 Collaborate with academic partners (e.g. university professors) to conduct research on the current 
national status of AI development in general as well as in the area of food safety.

•	 Consult academic partners and higher education authorities to review the educational curriculum on 
AI and relevant fields.

6.3.  Ensure the readiness of data
Before developing and using an AI tool, food safety competent authorities will likely need to evaluate the 
training data to determine its representativeness and / or the presence of potential biases. For example, 
the Japanese government has documented that such efforts should be made to prevent the creation of 
unbalanced datasets of humankind that could result from an AI model trained on biased data (Council for 
Social Principles of Human-centric AI, 2019).

The FAIR principles can provide a good approach to help ensure data and metadata are easy to locate, with 
clear access conditions, even for sensitive data (Wilkinson et al., 2016). Interoperability is achieved through 
standardized formats, enabling both humans and machines to use the data. Reusability depends on proper 
documentation and appropriate licensing).

Example actions
•	 Consider adopting relevant principles like FAIR; and sharing data to advance AI-driven food safety 

research.

•	 Strategize effective data standardization and responsible data sharing for future AI development in 
the field of food safety.
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6.4. � Step back and take a strong agrifood systems 
approach

Agrifood systems include the entire range of actors and their interlinked value-adding activities and involve 
the entire food supply chain, as well as the broader economic, societal and natural environments in which 
they are embedded (FAO, 2018). The importance of a systems approach is demonstrated by the European 
Geographical Bovine Spongiform Encephalopathy Risk Assessment (GBR), which integrated multiple 
factors, such as trade patterns, surveillance capacity, and national feed and farming practices, to evaluate 
and manage Bovine Spongiform Encephalopathy (BSE) risk. By accounting for both external challenges 
and the internal stability of national systems, the GBR enabled preventive, risk-based decision-making at 
national and international levels (Salman et al., 2012).

The agrifood systems are complex, and every part of the system may have a completely different way to 
manage, communicate and store data. Therefore, using AI to create a holistic model of the global agrifood 
system to assess food safety aspects has been reported to have great potential benefits (Nayak and 
Waterson, 2019). Because of the complexity of the global food system, it has been suggested a system-
of-systems approach may be used, where systems are modelled both at the micro and macro level first 
to eventually form a holistic model (Nayak and Waterson, 2019). In this way, one system’s success can 
positively influence surrounding systems, and many different actors within the system may benefit from 
various AI applications at the same time.

Example actions
•	 Hold an internal meeting with various colleagues in the agency / authority to discuss possible interests, 

needs and opportunities for jointly developing AI applications.

•	 List up issues / problems that may be addressed by AI and share with colleagues and partner agencies 
who may share the same issues / problems.

6.5. � If the data is not ready, consider generating quality 
data for a long run

When evaluating the training data, it is possible to conclude that the data sets are possibly biased, insufficient 
in amount, or not easy / ready to be accessed, thus not suitable for use for AI (Schwartz et al., 2022). If this 
happens, this means the AI development using the data sets will not succeed, as the outputs will become 
unreliable. In this case, food safety competent authorities may like to consider it as an opportunity to 
review and improve the mechanisms of relevant data generation, collection and consolidation (Alhosani 
and Alhashmi, 2024). Although the data generated and collected through the revised mechanism would 
not be immediately useful for AI development, maintaining such mechanisms to collect high-quality data 
will likely result in the improvement of food safety activities (EFSA, 2018). And in the long run, this may 
contribute to a better opportunity for future AI applications.

Example actions
•	 Redirect the final goal from development of AI to improvement of food safety situations to focus on 

quality data collection.

•	 Highlight the issues with the data sets that are not AI-ready so that they can be used as valuable 
lesson-learned material.
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6.6. � Actively collaborate with various stakeholders for 
artificial intelligence development

Several guidelines have emphasized the importance of having strong and effective partnerships among 
stakeholders, including private sectors, government agencies and academia at all national, regional and 
international levels, to work together in AI development (The Conference toward AI Network Society, 2017; 
Council for Social Principles of Human-centric AI, 2019; Webster et al., 2017). Such cooperation would foster 
innovation while helping to mitigate potential risks associated with AI deployment (AISI, 2024).

Example actions
•	 Look for and join a pilot programme to develop AI in the related public health fields.

•	 Consider developing regional networks on AI for food safety to discuss the current status and pipeline 
applications that may benefit various countries in the region.

•	 Consult international organizations such as FAO to obtain good practices and lessons learned, as 
well as to learn about the methods to assess the feasibility of using AI for food safety management.
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7. �Conclusions and the way 
forward

This document has explored the integration of artificial intelligence (AI) into food safety management, 
highlighting both the significant opportunities and the pressing challenges. AI tools have so far shown 
potential to support a range of food safety activities, including scientific advice, inspection, border control 
and other relevant activities typically carried out by food safety competent authorities. However, the effective 
and responsible use of AI demands robust AI governance frameworks, high-quality data, cross-sectoral 
collaboration, and an inclusive approach that leaves no one behind.

The literature synthesis, case studies, and regulatory insights presented in this document collectively 
emphasize that, for food safety competent authorities, AI is not a goal in itself but a means to enhance the 
efficiency and timely responses for food safety activities to achieve public health protection, sustainability 
and resilience of agrifood systems. Those competent authorities can identify and define clear problems that 
AI may be able to assist with, assess their current capacities, and invest in fundamental elements such as 
data readiness and human capital development. Moreover, ethical and responsible use of AI are the priority 
issues for the public sectors to mitigate risks like bias, data misuse, and hallucinations, ensuring that AI-
based decisions remain trustworthy and explainable.

Moving forward, key actions that can support the responsible and effective deployment of AI in food safety include:

•	 Strengthening AI governance and ethical frameworks: Governments and relevant stakeholders can 
collaborate and continue to develop, adopt, and update AI governance frameworks that emphasize 
transparency, accountability, fairness, and human rights.

•	 Building AI literacy and capacity: Food safety competent authorities can invest in capacity development, 
including training on AI fundamentals, data science, and risk communication, to ensure that staff can 
understand, evaluate, and oversee AI systems effectively.

•	 Improving data systems: High-quality, interoperable, and ethically governed data are essential. Authorities 
can work to bridge data gaps through partnerships, data-sharing initiatives, and the adoption of FAIR 
principles.

•	 Encouraging collaboration: Collaboration among public sector agencies, academia, the private sector, 
and international organizations is crucial for sharing knowledge, experiences, and best practices in 
AI development and deployment.

•	 Adopting a systems approach: Given the complexity of agrifood systems, AI would be best applied if it 
is done within an integrated framework, through systems thinking, that considers interactions across 
the entire food value chain, thereby enhancing risk-based decision-making and promoting sustainability.

In conclusion, while AI holds greater transformative potential for the future of food safety, its implementation 
must be grounded in rigorous governance, shared knowledge, and ethical responsibility. FAO, in collaboration 
with various partner agencies, remains committed to supporting countries in navigating this evolving 
landscape, ensuring that AI serves as a tool for building safer, more efficient, more sustainable, more resilient 
and more inclusive agrifood systems.
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Annex 1. Search Strategy

Introduction
This annex describes a strategy literature synthesis on the use of AI in food safety.

Scope
The PRISMA framework was chosen for scoping reviews for developing this review. 

Bias management
To minimize the risk of bias, a balanced team composition was ensured. The team consisted of a gender and 
nationality balanced group of expert researchers from WFSR and FAO. The gender balance was 4/5 (80 percent) 
female, 1/5 (20 percent) male. The team members originated from three continents (Africa, Asia, Europe). 

Databases
Scopus (Elsevier) was used for the search. Only peer reviewed journal publications were included. The 
publication years for the review were initially set from 2004 to 2024 to cover the last two decades. However, 
since almost no directly relevant articles were found between 2004 and 2012, the final cut-off was determined 
to be from 2012 to 2024.

Search string
Concept and the linked search terms used for the bibliographic search

  Concept	 Search terms

  AI in Food Safety	 ( ( “artificial intelligence” ) OR ( “machine learning” ) ) AND ( “food safety” ) 

Limitations
As the period of publications had an upper time limit of April 1st, 2024, by the time of publication of the 
document in 2025, there can be more relevant articles which were not . Searches were performed for Title 
and Abstracts, and Keywords/Topic/Identifiers. The language of the body of the publication was  limited to 
English. Editorials, opinions, reviews, abstracts, conference proceedings and all other works not representing 
original work were not be included in the core selection, yet some of these  were retained for use (e.g. reviews). 

Data storage
Records: Mendeley libraries, raw and edited excel spreadsheets. 

AI assisted literature search
For the main search, ASReview was be used (ASReview, 2023; Van de Schoot et al., 2021). ASReview guarantees 
a optimal procedure of literature review and is commonly accepted (used in 317 papers in three years).  
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Annex 2. �Overview of the reviewed 
papers

Paper Country  
of origin Topic Machine learning 

technique(s)
Deep 
Learning

Ahmed et al., 2013 USA Scientific advice Efficiency SVM no

Al et al., 2024 Turkey Scientific advice Prediction ANN RF SVR MLR no

Ataş, Yardimci and 
Temizel, 2012 Turkey Scientific advice Laboratory testing SVM no

Berhilevych et al., 2019 Ukraine Scientific advice Prediction ANN no

Bisgin et al., 2018 USA Inspection & border 
testing Efficiency ANN SVM no

Bolinger et al., 2021 USA Scientific advice Prediction RF no

Bouzembrak and 
Marvin, 2019 Netherlands Scientific advice Research BN no

Branstad-Spates et al., 
2023 USA Regulatory aspects Prediction GBM no

Buyuktepe et al., 2023 Turkey Scientific advice Research LIME SHAP yes

Camardo Leggieri, 
Mazzoni and Battilani, 
2021

Italy Scientific advice Research DNN yes

Chang, et al., 2020 Taiwan Regulatory aspects Prioritization RF no

Chen et al., 2020a China Scientific advice Research unclear unclear

Chen et al., 2022 China Scientific advice Laboratory testing ResNet yes

Chen and Zhang., 2022 China Regulatory aspects Efficiency SVM BERT yes

Chen et al., 2024a China Scientific advice Research multiple yes

Chen et al., 2024b China Scientific advice Laboratory testing ANN RF SVM 
BOOST no

Cheng et al., 2022 China Scientific advice Laboratory testing ELM no

Chung, Weller and 
Kovac, 2020 USA Scientific advice Laboratory testing RF no

Chung et al., 2022 Hong Kong Scientific advice Efficiency XGBOOST 
ExtraTrees no

Cox, 2021 USA Scientific advice Research RF BN GBM no

Darwish et al., 2022 France Scientific advice Laboratory testing SVM no
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Paper Country  
of origin Topic Machine learning 

technique(s)
Deep 
Learning

de Oliveira et al., 2022 Brazil Scientific advice Laboratory testing Decision Tree no

Du et al., 2022 China Scientific advice Laboratory testing GAN with SVM yes

Feng et al., 2023 China Scientific advice Laboratory testing Computer vision no

Feng et al., 2024 China Scientific advice Laboratory testing multiple no

Gao, et al., 2022 China Scientific advice Laboratory testing FNN RF SVM yes

Goldberg et al., 2022 USA Scientific advice Research AFINN CC no

Golden, Rothrock and 
Mishra, 2019 USA Scientific advice Research RF no

Gonçalves et al., 2023 Brazil Scientific advice Laboratory testing Multiple (LDA, 
MLP. Trees) no

He et al., 2022 China Scientific advice Laboratory testing SVM ANN no

Hu et al., 2020 China Scientific advice Research RF no

Hu, et al., 2023 China Scientific advice Laboratory testing CNN yes

Huang et al., 2023 China Scientific advice Prediction SVM RF BP-NN yes

Im et al., 2021 USA Scientific advice Research RF no

Jia et al., 2021 USA Scientific advice Laboratory testing DFNN yes

Jia et al., 2024 USA Scientific advice Laboratory testing DFNN yes

Jin et al., 2023 China Scientific advice Laboratory testing DF CNN yes

Jo, et al., 2023 South Korea Scientific advice Laboratory testing AlexNet CNN yes

Kalkan et al., 2014 Turkey Scientific advice Laboratory testing SVC ANN no

Kang, Park and Chen, 
2020 USA Scientific advice Laboratory testing Autoencoder yes

Kang et al., 2020 USA Scientific advice Laboratory testing unet yes

Karanth et al., 2022 USA Scientific advice Prediction RF SVM etc no

Karanth and Pradhan, 
2023 USA Scientific advice Research Elastic net no

Kim et al., 2015 South Korea Scientific advice Laboratory testing SVM kNN no

Kim et al., 2023 USA Scientific advice Laboratory testing multiple inv SVM no

Kusuma and Nurilmala 
2016 Indonesia Inspection & border 

testing Testing SVM no

Li et al., 2022 China Scientific advice Laboratory testing
SVM CNN 
Denoising 
Autoencoder

yes
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Lim et al., 2020 Singapore Scientific advice Research DNN yes

Lin et al., 2022 China Scientific advice Prediction CNN yes

Liu et al., 2021 Netherlands Regulatory aspects Prediction BN no

Liu et al., 2023 China Inspection & border 
testing Testing ResNet yes

Lu et al., 2024 China Scientific advice Laboratory testing BP-NN yes

Lyu et al., 2022 USA Scientific advice Laboratory testing SVM RF LASSO no

Ma et al., 2021 China Scientific advice Laboratory testing ELM no

Ma et al., 2023a China Scientific advice Laboratory testing SVM RF NN no

Ma et al., 2023b USA Scientific advice Laboratory testing YOLOv4 yes

Ma et al., 2023c China Scientific advice Prediction RF ANN no

Maeda et al., 2019 Japan Scientific advice Laboratory testing SVM RF no

Maharana et al., 2019 USA Scientific advice Research SVM BERT yes

Makridis, Mavrepis and 
Kyriazis, 2023 Greece Scientific advice Research DNN ResNet yes

Mangmee et al., 2020 Thailand Scientific advice Laboratory testing SNN kNN no

Marcoux et al., 2014 France Scientific advice Laboratory testing BN no

Marvin and 
Bouzembrak, 2020 Netherlands Scientific advice Research BN no

Marzec-Schmidt et al., 
2021 Sweden Scientific advice Prediction SVM RF no

Mateo et al., 2023 Spain Scientific advice Prediction XGBOOST RF NN no

Mavani et al., 2024 Malaysia Scientific advice Research FL no

Mi et al., 2023 China Scientific advice Prediction BP-NN yes

Munck et al., 2020 Denmark Regulatory aspects Prediction RF logit boost no

Murphy et al., 2021 USA Scientific advice Research RF MMI no

Nagy et al., 2023 Hungary Scientific advice Prediction CNN yes

Nallan Chakravartula  
 et al., 2022 Italy Scientific advice Laboratory testing CNN yes

Nanou, Pliatsika and 
Couris, 2023 Greece Scientific advice Laboratory testing SVM no

Nogales, Díaz-Morón 
and García-Tejedor, 2022 Spain Scientific advice Research MLP CNN RF yes
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Oldroyd, Morris and 
Birkin, 2021 UK Regulatory aspects Prioritization RF SVM no

Park et al., 2023 USA Scientific advice Laboratory testing fusion-net yes

Petrea et al., 2020 Romania Scientific advice Research RF no

Pillai et al., 2022 USA Scientific advice Research GAN SHAP MLP 
XGBOOST RF yes

Portz et al., 2022 Brasil Regulatory aspects Prioritization DT NN no

Pradana-López et al., 
2022 Spain Scientific advice Laboratory testing ResNet viz. yes

Rahi et al., 2021 Iran Scientific advice Laboratory testing GA no

Rodríguez et al., 2023 Spain Scientific advice Research RF no

Rortais et al., 2021 Italy Regulatory aspects Prioritization LDA no

Sadilek et al., 2017 USA Regulatory aspects Prioritization log-linear 
maximum entropy no

Sadilek et al., 2018 USA Regulatory aspects Prioritization log-linear 
maximum entropy no

Saha et al., 2023 Canada Scientific advice Laboratory testing CNN yes

Setiawan, Adi and  
Widodo, 2024 Indonesia Scientific advice Research DCNN ResNet yes

Shin et al., 2023 USA Scientific advice Laboratory testing SVM ANN no

Smeesters et al., 2021 Belgium Scientific advice Laboratory testing ELM LDA no

Song et al., 2022 China Scientific advice Research BERT LSTM SVM yes

Stanosheck, et al., 2024 USA Scientific advice Research SVM RF no

Stocker, Pachepsky and 
Hill, 2022 USA Scientific advice Prediction XGBOOST kNN 

SVM RF no

Sun, Liu and Xue, 2024 China Scientific advice Laboratory testing CNN ResNet yes

Talari, et al., 2024 Greece Inspection & border 
testing Prioritization ML no

Tan et al., 2019 USA Scientific advice Laboratory testing SVM no

Tang, Guo and Shen, 
2023 China Scientific advice Laboratory testing SVM XGBOOST no

Tang et al., 2023 China Scientific advice Research
XGBOOST SVM 
kNN RF AdaBoost 
M:P

no

Tanui et al., 2022 USA Scientific advice Prediction RF no
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Tao et al., 2023 USA Scientific advice Research
BERTweet, 
RoBERTa, BiLSTM, 
MGADE

yes

Thao et al., 2023 Vietnam Scientific advice Research MoCo yes

Tonda, Reynolds and 
Thomopoulos, 2023 France Scientific advice Research RF no

Toro et al., 2022 Chile Scientific advice Research RF no

Tsakanikas et al., 2016 Greece Scientific advice Laboratory testing SVR no

Tu et al., 2024 China Inspection & border 
testing Efficiency Ensemble no

van den Bulk et al., 
2022 Netherlands Scientific advice Prediction NB SVM no

Vangay et al., 2014 USA Scientific advice Research RF SVM etc no

Wang, Greenwood and 
Klein, 2021 USA Scientific advice Prediction ANN no

Wang et al., 2022 Netherlands Scientific advice Research SVM XGBOOST no

Wang, Liu and van der 
Fels-Klerx, 2022 Netherlands Scientific advice Prediction RF no

Wang et al., 2023 China Scientific advice Laboratory testing SVM BP-NN RF yes

Wang et al., 2024a China Scientific advice Laboratory testing multiple inv SVM no

Weller et al., 2020 USA Scientific advice Prediction
SVM kNN 
XGBOOST LASSO 
etc.

no

Weller, Love and 
Wiedmann, 2021a USA Scientific advice Research NN RF LASSO 

SVM etc no

Weller, Love and 
Wiedmann, 2021b USA Scientific advice Research RF SVM etc no

Wu and Weng, 2021 Taiwan Inspection & border 
testing Prioritization RF BN GBM no

Wu et al., 2023b China Scientific advice Laboratory testing kNN, RF, SVM, 
PLS, CNN yes

Wu, et al., 2023a Taiwan Inspection & border 
testing Prediction RF BN GBM no

Xiang et al., 2023 China Scientific advice Research RF SVM no

Xie, et al., 2022 China Regulatory aspects Prediction RF XGBOOST no

Xu et al., 2022 China Scientific advice Efficiency LSTM XGBOOST 
GBM yes

ARTIFICIAL INTELLIGENCE FOR FOOD SAFETY66



Paper Country  
of origin Topic Machine learning 

technique(s)
Deep 
Learning

Yamamoto et al., 2021 Japan Scientific advice Laboratory testing SVM no

Yan et al., 2020 China Scientific advice Laboratory testing ENR SVR 
XGBOOST no

Yan et al., 2021 China Scientific advice Laboratory testing decision tree no

Yang et al., 2022 USA Scientific advice Laboratory testing NN no

Yi et al., 2023 USA Scientific advice Laboratory testing CNN yes

Zhang et al., 2021 China Scientific advice Research XGBOOST no

Zhang et al., 2022 USA Scientific advice Research Active learning 
SSL no

Zhang et al., 2023a USA Scientific advice Laboratory testing Multiple no

Zhang et al., 2023b China Scientific advice Research LSTM MLP SVM yes

Zhao, Liu and Song, 
2023 China Scientific advice Laboratory testing XGBOOST no

Zheng, Gracia and Hu, 
2023 USA Scientific advice Research RF no

Zhong et al., 2021 China Scientific advice Laboratory testing LSTM yes

Zhu et al., 2023 China Scientific advice Research CART SVR no

Zuo et al., 2022 China Scientific advice Research Denoising 
Autoencoder yes

ANN= artificial neural network; AFINN= adaptive fuzzy inference neural network; BERT = bidirectional encoder representations from 
transformers; BiLSTM= bidirectional LSTM; BN = Bayesian network; BP-NN= back propagation neural network; CART= classification 
and regression tree; DCNN = deep convolutional neural network; DFNN= deep feedforward neural networks; DT NN= deep tensor neural 
network; ELM= extreme learning machine; ENR= elastic net regression; FL= fuzzy logic; FNN= feedforward neural network; GA= genetic 
algorithm; GAN= generative adversarial network; GBM= gradient boosting machine; kNN= k-nearest neighbors; LASSO= least absolute 
shrinkage and selection operator;  LDA= linear discriminant analysis; LIME= local interpretable model-agnostic explanations; LSTM= 
long short-term memory; MGADE= multi-grained adverse drug events detection network; ML = (traditional) machine learning; MLP= 
multilayer perceptron; MLR= multiple linear regression; MMI= maximum mutual information; MoCo= momentum contrast technique; 
PLS= partial least squares; RF= random forest; RoBERTa = robust optimized BERT pretraining approach;  SHAP= SHapley Additive 
exPlanations; SSL= self-supervised learning;  SVM= support vector machine; SVR= support vector regression; XGBOOST= = extreme 
gradient boosting; YOLOv4= you only look once version 4.

Source: See References. 
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# AI technique Explanation found in the relevant article Category

1 artificial neural 
network (ANN)

ANN consists of nonlinear statistical data modeling tools that are 
based on biological neuron models to mimic the intelligent system in 
the human brain (Al et al., 2024). deep 

learning 
(DL)Wiki: An ANN consists of interconnected artificial neurons that 

process signals through weighted connections. Organized into 
layers, these networks transform inputs through activation functions.

2 AlexNet

AlexNet is a type of CNN with an architecture capable of extracting 
features from spectral information (Jo et al., 2023).

DL

Wiki: AlexNet is a convolutional neural network architecture.

3 Bayesian network 
(BN)

BN has its origin from Bayesian statistics and decision theory 
coupled with graph theory. They are a class of probabilistic models with 
the structure consisting of nodes (i.e., random variables) that are 
connected by directed arcs showing a dependence structure between 
the nodes (Bouzembrak et al., 2024).

machine 
learning 
(ML)

Wiki: A  Bayesian network is a probabilistic graphical model that 
represents a set of variables and their conditional dependencies via a 
directed acyclic graph.

4

bidirectional encoder 
representation from 
transformations 
(BERT)

BERT is an unsupervised DL language model often trained on large 
text corpus (Maharana et al., 2019).

DL
Wiki: BERT is a language model which learns to represent text as 
a sequence of vectors using self-supervised learning. It uses the 
encoder-only transformer architecture.

5 BERTweet

BERTweet is a variant of BERT trained to classify relevant data from 
Twitter (Tao et al., 2023).

DL

Wiki: No Wikipedia page. Type of BERT.

6 convolutional neural 
networks (CNN)

CNN is a type of DL model that uses one or more layers of fully 
connected neurons (He, 2024).

DL
Wiki: A CNN is a regularized type of feedforward neural network that 
learns features via filter (or kernel) optimization.

7 decision tree (DT)

DT model builds a decision tree through a recursive splitting of a 
dataset from the most significant predictor variable until a stopping 
criterion is met (Talari et al., 2024).

ML
Wiki: A DT is a decision support recursive partitioning structure that 
uses a tree-like model of decisions and their possible consequences, 
including chance event outcomes, resource costs, and utility.

Annex 3. �Artificial intelligence 
techniques mentioned in 
the reviewed articles and 
Wikipedia
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8
deep convolutional 
neural network 
(D-CNN)

This model consists of five convolutional layers followed by a three-
layer perceptron. The convolutional layer is used for the extraction of 
adjacent features, with the maximum pooling layer used after each 
convolutional layer to enhance the generalization ability of the model 
(Chen et al., 2024b).

DL

Wiki: No Wikipedia page. Type of CNN.

9 denoising 
autoencoder (DAE)

DAE is an ANN that works in an unsupervised manner. It could 
efficiently reduce the redundancy of the input data as well as encode 
it. DAE is often used for dimensionality reduction and to compress 
data so as to remove noise and to learn advanced features from the 
original input data (Li et al., 2022).

DL

Wiki: An autoencoder is a type of ANN used to learn efficient codings 
of unlabeled data (unsupervised learning). A DAE is trained by 
intentionally corrupting the inputs of a standard autoencoder during 
training.

10 Elastic net

Elastic net model combines the strengths of lasso and ridge 
regression models by using a ridge-type penalty to regularize and a 
lasso-type penalty to select features (Weller et al., 2020).

ML

Wiki: Elastic net is a regularized regression method that linearly 
combines the L1 and L2 penalties of the lasso and ridge methods.

11 extreme gradient 
boosting (XGBoost)

XGBoost algorithm is a powerful and efficient ML method suitable for 
data with complex structures. It is based on gradient boosted trees 
and has several advantages including regularization for preventing 
overfitting, a built-in routine to handle missing values, a parallel 
processing for faster computation, and an in-built cross-validation 
(Zhao, Liu & Song, 2023).

ML

Wiki: Gradient boosting is a machine learning technique based on 
boosting in a functional space, where the target is pseudo-residuals 
instead of residuals as in traditional boosting. It gives a prediction 
model in the form of an ensemble of weak prediction models which 
are typically simple decision trees.

12 extreme learning 
machine (ELM)

ELM is a type of ML method that can be operated with randomly 
assigned weights to cater for the hidden layer. It can use neurons 
together with the rectified linear unit (ReLU) for function activation 
and as a regularization factor of 10− 2 (Smeesters et al., 2021).

ML
Wiki: ELMs are feedforward NNs for classification, regression, 
clustering, sparse approximation, compression and feature learning 
with a single layer or multiple layers of hidden nodes, where the 
parameters of hidden nodes (not just the weights connecting inputs 
to hidden nodes) need to be tuned.

13 extremely randomized 
trees (ExtraTrees)

ExtraTrees in ML methods consist of multiple decision trees. It has a 
high discrimination ability when compared to random forest and can 
be less prone to noise in a dataset (Chung et al., 2022).

ML
Wiki: RF is an ensemble learning method for classification, regression 
and other tasks that works by creating a multitude of decision trees 
during training. In the case of ExtraTrees, each tree is trained using 
the whole learning sample and the top-down splitting is randomized.
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14 fully connected neural 
network (FCNN)

FCNN in DL methods is capable of learning complex relationships. It 
has hundreds of neurons and multiple hidden layers and has found 
wide applications in predicting molecular properties as well as 
toxicity (Gao et al., 2022). DL

Wiki: No Wikipedia page. Type of NN with every neuron in one layer 
connecting to every neuron in the next layer.

15 Fusion-Net

Fusion-Net as a type of DL method has multiple forms of predictors 
for use with, for example, spectra and band images (Park et al., 2023).

DL

Wiki: No Wikipedia page. Type of deep fully residual CNN.

16 fuzzy logic (FL)

FL is a form of AI capable of analysing vague and inaccurate data 
and help with important decision making (Mavani et al., 2024).

FL
Wiki: FL is a form of many-valued logic in which the truth value of 
variables may be any real number between 0 and 1.

17 Gaussian naive Bayes 
(GNB)

GNB uses Bayes’ theorem in predicting the probability of a data point 
belonging to a given class (Talari et al., 2024).

MLWiki: A naïve Bayes model assumes the information about the class 
provided by each variable is unrelated to the information from the 
others, with no information shared between the predictors. GNB 
assumes continuous features follow a Gaussian distribution.

18 Gaussian progress 
regression (GPR)

GPR in ML methods was proposed by O’Hagan and is based on 
Bayesian analysis as well as statistical learning theory. It is suitable 
for handling nonlinear regression issues with high-dimensional and 
small-sample size (Zhu et al., 2023).

ML
Wiki: Gaussian process is a stochastic process, such that every 
finite collection of those random variables has a multivariate normal 
distribution. Inference of continuous values with a Gaussian process 
prior is known as GPR.

19 k-nearest neighbors 
(kNN)

kNN is a form of a non-parametric method that works by finding the 
K nearest data points in reference to the test point and by using their 
average or majority vote, make the predictions (Talari et al., 2024).

ML
Wiki: The kNN algorithm  is a non-parametric supervised learning 
method. An object is classified by a plurality vote of its neighbors, 
with the object being assigned to the class most common among its 
k nearest neighbors.

20

least absolute 
shrinkage and 
selection operator 
(LASSO)

LASSO is a regression methos that uses a penalty like ridge 
regression, although in this case, coefficient estimates of 0 are 
allowed (Weller et al., 2020).

MLWiki: LASSO is a regression analysis method that performs both 
variable selection and regularization in order to enhance the 
prediction accuracy and interpretability of the resulting statistical 
model. The lasso method assumes that the coefficients of the linear 
model are sparse, meaning that few of them are non-zero.
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21 latent dirichlet 
allocation (LDA)

LDA is a model that can be applied in processing rapidly changing 
information in the media (Rortais et al., 2021).

ML
Wiki: LDA is a Bayesian network for modeling automatically extracted 
topics in textual corpora.

22
local interpretable 
model-agnostic 
explanations (LIME)

LIME trains an understandable model by using new data points 
weighted according to how they are close to the original points 
(Buyuktepe et al., 2023).

ML

Wiki: LIME is an explainable AI technique that approximates locally a 
model’s outputs with a simpler, interpretable model.

23 linear discriminant 
analysis (LDA)

LDA is often trained using regularized, pooled covariance matrices 
(Smeesters et al., 2021).

MLWiki: LDA is a generalization of Fisher’s linear discriminant to find a 
linear combination of features that characterizes or separates two 
or more classes of objects or events. The resulting combination may 
be used as a linear classifier, or, more commonly, for dimensionality 
reduction before later classification.

24 Log-linear maximum 
entropy model

A log-linear maximum entropy model can estimate an anonymized 
search query based on the probability that the query belongs to a 
particular class (Sadilek et al., 2017). 

MLWiki: The principle of maximum entropy states that the probability 
distribution which best represents the current state of knowledge 
about a system is the one with largest entropy, in the context of 
precisely stated prior data. In the case of maximum entropy models 
the observed data itself is assumed to be the testable information.

25 logistic regression 
(LR)

LR is a classical classifier in ML often used to analyse labeled 
sample data (He, 2024). It returns the probability of a case 
belonging to a particular class, for example, either Class 0 or Class 1 
(Stanosheck et al., 2024).

Wiki: A logistic model is a statistical model that models the log-odds 
of an event as a linear combination of one or more independent 
variables. Logistic regression estimates the parameters of a logistic 
model (the coefficients in the linear or non linear combinations).

26
long short-term 
memory neural 
network (LSTM) 

LSTM in DL methods has a special variant (recurrent neural network) 
and is less prone to gradient disappearance and explosion (He, 2024).

DL
Wiki: LSTM is a type of recurrent neural network aimed at mitigating 
the vanishing gradient problem.

27 momentum contrast 
technique (MoCo)

MoCo is a contrastive self-supervised learning technique with the 
capability for generating high-quality latent representations for 
input images from unlabeled data. This technique help overcome 
the challenges of training learning models with general and 
discriminative features (Thao et al., 2023).

DL
Wiki: In self-supervised learning a model is trained on a task using 
the data itself to generate supervisory signals, rather than relying on 
externally-provided labels. Contrastive self-supervised learning uses 
both positive and negative examples in the training data and use 
the loss function to minimize the distance between positive sample 
pairs, while maximizing the distance between negative sample pairs.
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28 multilayer perceptron 
(MLP)

Multilayer Perceptron (MLP) consists of feedforward supervised 
neural network system. It consists of an input layer, an output layer, 
and an arbitrary number of hidden layers. The basic MLP has a single 
hidden layer. Neurons use nonlinear activation functions, either 
sigmoid, hyperbolic tangent, or Rectified Linear Unit (ReLU) (Nogales, 
Díaz-Morón & García-Tejedor, 2022). DL

Wiki: MLP is a feedforward neural network consisting of fully 
connected neurons with nonlinear activation functions, organized in 
layers, notable for being able to distinguish data that is not linearly 
separable.

29 multiple linear 
regression (MLR)

MLR in ML techniques uses a straight line in estimating the 
relationship between the dependent variable and the several 
explanatory variables (Al et al., 2024).

ML
Wiki: MLR is a model that estimates the linear relationship between a 
scalar response (dependent variable) and more than one explanatory 
variables.

30 neural network (NN)

NN is executed using sigmoid as activation function and hidden 
layers with numerous small processing units known as neurons. The 
neurons provide inputs for generating inter-connected outputs and 
identification of specificities more easily (Smeesters et al., 2021).

DL

Wiki: A neural network consists of interconnected artificial neurons 
that process signals through weighted connections. Organized into 
layers, these networks transform inputs through activation functions.

31
partial least squares 
discriminant analysis 
(PLS-DA)

PLS-DA is a predictive model based on the classical PLSR method 
with advantages such as noise reduction and variable selection (Kim 
et al., 2022) ML

Wiki: Type of PLSR used when the dependent variable is categorical.

32 partial least squares 
regression (PLSR)

PLSR method can relate two data matrices through establishment of 
a linear multivariate mode (Zhu et al., 2023).

ML
Wiki: PLSR is a statistical method that finds a linear regression 
model by projecting the predicted variables and the observable 
variables to a new space of maximum covariance.

33
quadratic 
discriminant analysis 
(QDA)

QDA is a form of ML that can use the pseudoinverse of the 
covariance matrix to make prediction. (Smeesters et al., 2021).

ML
Wiki: Closely related to LDA, but in in QDA there is no assumption 
that the covariance of each of the classes is identical.

34 random forest (RF) 

RF in ML is a supervised learning regression technique that uses 
tree ensemble models. It builds numerous different decision trees in 
parallel and gives a prediction of built trees based on an output of the 
mean value of the classes (Al et al., 2024).

ML

Wiki: RF is an ensemble learning method for classification, regression 
and other tasks that works by creating a multitude of decision trees 
during training.
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35
residual convolutional 
neural network 
(ResNet)

ResNet is a superior form of DL model capable of overcoming the 
problems of vanishing or exploding gradients that results from the 
addition of internal residual blocks (Chen et al., 2022a).

DL

Wiki: ResNet is a deep learning architecture in which the layers learn 
residual functions with reference to the layer inputs.

36 RoBERTa

RoBERTa model has been used to analyse data form Twitter with 
high accuracy. However, limitations have been observed in the 
generalization capability in cases of unseen tweets (Tao et al., 2023). DL

Wiki: No Wikipedia page. Type of BERT.

37 Shapley additive 
explanations (SHAP)

SHAP model is used to identify the most influential features that 
impact the model’s decisions. (Buyuktepe et al., 2023).

MLWiki: Explainable AI technique: SHAP enables visualization of 
the contribution of each input feature to the output. It works by 
calculating Shapley values, which measure the average marginal 
contribution of a feature across all possible combinations of 
features.

38 support vector 
regression (SVR)

SVR is a type of ML with regression performed by kernel functions. 
The functions map the input data into a high-dimensional space 
using either linear or nonlinear transformations. (Al et al., 2024).

ML
Wiki: An extension of SVM. The model produced by SVR depends 
only on a subset of the training data, because the cost function 
for building the model ignores any training data close to the model 
prediction.

39 support vector 
machines (SVM)

SVM in ML is a powerful technique used for classification and 
regression tasks (Talari et al., 2024).

ML
Wiki: SVMs are supervised max-margin models with associated 
learning algorithms that analyze data for classification and 
regression analysis.

40 U-Net

U-Net, also known as U-shaped CNN, has been employed in analysis 
involving segmentations (Kang et al., 2020).

DL

Wiki: Type of CNN developed for image segmentation.

41 what-if tool (WIT)

WIT is a visual interface used to understand the dataset and the 
outputs of ML models operating in a blackbox. It can be used for 
effective testing of trained ML models without writing any code. 
(Buyuktepe et al., 2023). ML

Wiki: No Wikipedia page. Explainable AI technique.

42 you only look once 
version 4 (YOLOv4)

YOLOv4 as a DL method has an architecture to enable it to achieve 
real-time object detection way above the human perception of 30 
frames/second. It has found wide applications in locating and 
classifications of, for example, microcolonies. (Ma et al., 2023b). DL

Wiki: Object detection system based on CNN.

Source: See References.
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